Shoots of Agave nussaviorum García-Mend. rooted by varying inorganic salts, IBA and incubation

Authors

  • José Raymundo Enríquez-Valle Programa de Maestría en Ciencias en Productividad en Agroecosistemas-Tecnológico Nacional de México (TecNM)-Instituto Tecnológico del Valle de Oaxaca. Ex hacienda de Nazareno, Xoxocotlán, Oaxaca. CP. 71230
  • Ilse Lizbeth Chávez-Cruz Programa de Maestría en Ciencias en Productividad en Agroecosistemas-Tecnológico Nacional de México (TecNM)-Instituto Tecnológico del Valle de Oaxaca. Ex hacienda de Nazareno, Xoxocotlán, Oaxaca. CP. 71230
  • Gerardo Rodríguez-Ortiz Programa de Maestría en Ciencias en Productividad en Agroecosistemas-Tecnológico Nacional de México (TecNM)-Instituto Tecnológico del Valle de Oaxaca. Ex hacienda de Nazareno, Xoxocotlán, Oaxaca. CP. 71230 https://orcid.org/0000-0003-0963-8046
  • Gisela Virginia Campos-Ángeles Programa de Maestría en Ciencias en Productividad en Agroecosistemas-Tecnológico Nacional de México (TecNM)-Instituto Tecnológico del Valle de Oaxaca. Ex hacienda de Nazareno, Xoxocotlán, Oaxaca. CP. 71230 https://orcid.org/0000-0003-2258-7124

DOI:

https://doi.org/10.29312/remexca.v15i8.3205

Keywords:

Agave nussaviorum, adventitious roots, micropropagation

Abstract

In Oaxaca, Mexico, populations of Agave nussaviorum are declining and micropropagation is proposed in addition to the use of conventional methods. This work aimed to evaluate the effect of the concentration of inorganic salts and indole-butyric acid in the culture medium, as well as the incubation environment, to root shoots in vitro. In vitro cultured shoots were transferred for rooting to nine culture medium variants that differed in the concentration of inorganic salts of the culture medium (60, 80 and 100%) and indole-butyric acid (0, 0.5 and 1 mg L-1) in a factorial design with nine treatments. For 28 days, all cultures were incubated in the laboratory with LED lighting and the percentage of shoots with roots was evaluated. From day 29 onwards, half of the cultures in each variant of culture medium were separated to incubate them for 21 days exposed to solar radiation reduced by 40% by shade mesh in a greenhouse, while the rest continued in incubation with LED lamps in the laboratory. At the end of the first period, the highest percentage, 83.3% of shoots with roots, was in the culture medium with 60% inorganic salts and 0.5 mg L-1 of indole-butyric acid. At the end of the second period, all shoots had adventitious roots under the following conditions: culture medium with 60% salts and 0.5 or 1 mg L-1 indole-butyric acid incubated in the laboratory; culture medium with 60% inorganic salts and 1 mg L-1 indole-butyric acid incubated in a greenhouse; culture medium with 100% inorganic salts and 0.5 mg L-1 indole-butyric acid incubated in a greenhouse.

Downloads

Download data is not yet available.

References

Aguilar-Jiménez, D. y Rodríguez de la O, J. L. 2018. Micropropagación y aclimatación de Maguey Pitzometl (Agave marmorata Roezl) en la mixteca poblana. Revista Colombiana de Biotecnología. 20(2):124-131. Doi: 10.15446/rev.colomb.biote.v20n2.77084.

Arzate-Fernández, A. M.; Piña-Escutia, J. L.; Norman-Mondragón, T. H.; Reyes-Díaz, J. I.; Guevara-Suárez, K. L. y Vázquez-García, L. M. 2016. Regeneración de agave mezcalero (Agave angustifolia Haw.) a partir de embriones somáticos encapsulados. Revista Fitotecnia Mexicana. 39(4):359-366.

Bautista-Castellanos, A. I.; Enríquez-Valle, J. R.; Velasco-Velasco, V. A. and Rodríguez-Ortiz, G. 2020. Enraizado de brotes in vitro y aclimatación de plantas de Agave potatorum Zucc. Ecosistemas y Recursos Agropecuarios. 7(3):1-13. Doi: https://doi.org/10.19136/era.a7n3.2618.

Borges, D. I.; Oliveira, M. C.; Dos Santos-Penoni, E.; Pereira-De Padua T. R.; Tavares-Braga, F. and Pasqual, M. 2011. Micropropagation of chrysanthemum (Dendranthema grandiflora Tzevele cv. rage) under natural and artificial light in different concentration of the culture media. Plant Cell Cult Microprop. 7(1):1-8.

Cárdenas-Lara, A. y Villegas-Monter, A. 2002. Potencial osmótico del medio de cultivo con diferentes componentes para la propagación in vitro. Revista Fitotecnia Mexicana. 25(2):213-217.

Cruz-García, H.; Campos-Ángeles, G. V.; Enríquez-Valle, J. R.; Velasco-Velasco, V. A. y Rodríguez-Ortiz, G. 2017. Senescencia foliar en plantas micropropagadas de Agave americana durante su aclimatación. Revista Mexicana de Ciencias Agrícola. 8(2):381-391.

Cruz-García, H.; Enríquez-Valle, J. R.; Velasco-Velasco, V. A.; Ruiz-Luna, J.; Campos-Ángeles, G. V. y Aquino-García, D. E. 2013. Nutrimentos y carbohidratos en plantas de Agave angustifolia Haw. y Agave karwinskii Zucc. Revista Mexicana de Ciencias Agrícolas. 4(6):1161-1173.

Enríquez-Valle, J. R.; Carrillo-Castañeda, G. y Rodríguez, O, J. L. 2005. Sales inorgánicas y ácido indolbutírico en el enraizado in vitro de brotes de Agave angustifolia. Revista Fitotecnia Mexicana. 28(2):175-178.

Enríquez-Valle, J. R.; Antonio-Luis, K. L.; Rodríguez-Ortiz, G. and Campos-Ángeles, G. V. 2016. Effect of culture medium and incubation on the characteristics of micropropagated agave plants. Ciencia e Investigación Agraria. 43(2):26-272.

Enríquez-Valle, J. R.; Estrada-Silias, A.; Rodríguez-Ortiz, G.; Velasco-Velasco, V. A. y Campos-Ángeles, G. V. 2013. Sustrato y dosis de fertirriego en la aclimatización de vitroplantas de Agave americana var. Oaxacensis. Revista de la Facultad de Ciencias Agrarias Uncuyo. 45(2):341-348. Doi: 10.4067/S0718-16202016000200009.

García-Mendoza, A. 2010. Revisión taxonómica del complejo Agave potatorum Zucc. (Agavaceae): nuevos taxa y neotipificación. Acta Botánica Mexicana. 91:71-93.

Garriga, C. M.; González, O, G.; Alemán, G. S.; Abreu C. E.; Quiroz B. K.; Caligari, P. D. S. and García-González, R. 2010. Management of auxin cytokinin interactions to improve micropropagation protocol of henequen (Agave fourcroydes Lem.). Chilean Journal of Agricultural Research. 70(4):545-551.

George, E. F. and Debergh, P. C. 2008. Micropropagation: uses and methods. In: plant propagation by tissue culture. Ed. Springer. Dordrecht. 29-64 pp.

George, E. F.; Hall, M. A. and De-Klerk, G. J. 2008. Plant growth regulators I: Introduction; auxins, their analogues and inhibitors in: Plant propagation by tissue culture 3rd. Ed. The Background. Springer. 175-204 pp.

Li, C. X.; Xu, Z. G.; Dong, R. Q.; Chang, S. X.; Wang, L. Z.; Khalil-Rehman, M. and Tao, J. M. 2017. An RNA-Seq analysis of grape plantlets grown in vitro reveals different responses to blue, green, red led light and white, fluorescent light. Frontiers in Plant Science. 8(78):1-16. Doi: https://doi.org/10.3389/fpls.2017.00078.

Madrigal, L. R.; Pineda, F. E. and Rodríguez, O. J. L. 1990. Agave. In: handbook of plant cell culture. Ammirato, P. V.; Evans, D. A.; Sharp, W. R. and Bajaj, Y. P. S. Ed. McGraw-Hill Publishing Company. New York, USA. 206-227 pp.

Miguel-Luna, M. E.; Enríquez-Valle, J. R.; Velasco-Velasco, V. A.; Villegas-Aparicio, Y.; Carrillo-Rodríguez, J. C. y Rodríguez-Ortiz, G. 2013. Composición del medio de cultivo y la incubación para enraizar brotes de Agave. Revista Mexicana de Ciencias Agrícolas. 4(6):1151-1159.

Molina-Guerrero, J. A.; Botello-Álvarez, J. E.; Estrada-Baltazar, A.; Navarrete-Bolaños, J. L.; Jiménez-Islas, H.; Cárdenas-Manríquez, M. y Rico-Martínez, R. 2007. Compuestos volátiles en el mezcal. Revista Mexicana de Ingeniería Química. 6(1):41-550.

Monja-Mio, K. M.; Olvera-Casanova, D.; Herrera-Herrera, G.; Herrera-Alamillo, M. A.; Sánchez-Teyer, F. L. and Robert, M. L. 2020. Improving of rooting and ex vitro acclimatization phase of Agave tequilana by temporary immersion system (BioMINT™). In vitro Cellular & Developmental Biology Plant. 56:662-669. https://doi.org/10.1007/s11627-020-10109-5.

Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum. 15(3):473-497.

Peng, M.; Hudson, D.; Schofield, A.; Tsao, R.; Yang, R.; Gu, H.; Bi, Y. and Rothstein, S. J. 2008. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. Journal of Experimental Botany. 59(11):2933-2944. Doi: 10.1093/jxb/ern148.

Pérez-Santiago, R.; Enríquez-Valle, J. R.; Castañeda-Hidalgo, E.; Velasco-Velasco, V. A.; Rodríguez-Ortiz, G. y Campos-Ángeles, G. V. 2014. Dosis de fertirriego durante la aclimatización de plantas de Agave americana micropropagadas. Revista Mexicana de Agroecosistemas. 1(1):20-27.

Pospíšilová, J.; Synková, H.; Haisel, D. and Semorádová, S. 2007. Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). Acta Horticulturae. 748:29-38.

Pospíšilová, J.; Ticha, I.; Kadleček, P.; Haisel, D. and Plzáková, Š. 1999. Acclimatization of micropropagated plants to ex vitro conditions. Biologia Plantarum. 42(4):418-479.

Pospíšilová, J.; Haisel, D.; Synková, H.; Čatský, J.; Wilhelmová, N.; Plzáková, Š.; Procházková, D. and Šrámek, F. 2000. Photosynthetic pigments and gas exchange during ex vitro acclimation of tobacco plants as affected by CO2 supply and abscisic acid. Plant Cell, Tissue and Organ Culture. 61:125-133.

Puente-Garza, C. A.; Meza-Miranda, C.; Ochoa-Martínez, D. and García-Lara, S. 2017. Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Physiology and Biochemistry. 115:400-407. Doi: https://doi.org/10.1016/j.plaphy.2017.04.012.

Ríos-Ramírez, S. C.; Enríquez-Valle, J. R.; Rodríguez-Ortiz, G. and Ruíz-Luna, J. 2017. Benzylaminopurine and indol-3 acetic acid concentration in in vitro proliferation of Agave angustifolia adventitious shoots. Ciencia e Investigación Agraria. 44(3):285-294. Doi: 10.7764/rcia.v44i3.1810.

Sánchez, A.; Coronel-Lara, Z.; Gutiérrez, A.; Vargas, G.; Coronado, M. L. y Esqueda, M. 2020. Aclimatación y trasplante de vitroplantas de Agave angustifolia Haw. en condiciones silvestres. Revista Mexicana de Ciencias Agrícolas. 11(7):1593-1605.

Silos-Espino, G.; González-Cortés, N.; Carrillo-López, A.; Guevara-Lara, F.; Valverde-González, M. E. and Paredes-López, O. 2007. Chemical composition and in vitro propagation of Agave salmiana “Gentry”. Journal of Horticultural Science & Biotechnol. 82(3):355-359. Doi: http://dx.doi.org/10.1080/14620316.2007.11512242.

SIAP. 2021. Sistema de Información Agroalimentaria y Pesquera. Anuario Estadístico de la Producción Agrícola 2013 en México. Sistema de Información Agroalimentaria y Pesquera de la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. México.

Sosa-Castillo, M.; Alemán-García, S.; Pérez-Hernández, Y.; Abreu-Cruz, E.; Sosa-Castillo, D. y Gonzales-Oramas, G. 2014. Caracterización de la lámina foliar de plantas de Agave fourcroydes Lem. obtenidas por propagación asexual. Biotecnología Vegetal. 14(1):37-44.

Souza, F. L.; Leal, G. A.; Silva, C. V.; Moura-Assis, F. A. M.; Walter, R.; Massi, F. T.; Rangel-Silva, J.; Amaral, G. G.; Pereira, R. W.; Vendrame, W. A. and Campostrini, E. 2021. Better light spectral quality and thermal amplitude inside the greenhouse stimulate growth and improve acclimatization of in vitro grown Cattleya warneri T. Moore. In vitro Cellular and Developmental Biology-Plant. 57:883-896. Doi: https://doi.org/10.1007/s11627-021-10162-8.

Teixeira-da Silva, J. A.; Dam, D. T. G. and Tanaka, M. 2005. In vitro acclimatization of banana and Cymbidium. International Journal of Botany. 1(1):41-49. Doi: 10.3923/ijb.2005.41.49.

Valenzuela-Sánchez, K. K.; Juárez-Hernández, R. E.; Cruz-Hernández, A.; Olalde-Portugal, V.; Valverde, M. E. and Paredes-López, O. 2006. Plant regeneration of Agave tequilana by indirect organogenesis. In vitro Cellular Developmental Biology-Plant. 42(4):336-340. Doi: 10.1079/IVP2006788.

Published

2025-01-09

How to Cite

Enríquez-Valle, José Raymundo, Ilse Lizbeth Chávez-Cruz, Gerardo Rodríguez-Ortiz, and Gisela Virginia Campos-Ángeles. 2025. “Shoots of Agave Nussaviorum García-Mend. Rooted by Varying Inorganic Salts, IBA and Incubation”. Revista Mexicana De Ciencias Agrícolas 15 (8). México, ME:e3205. https://doi.org/10.29312/remexca.v15i8.3205.

Issue

Section

Articles

Most read articles by the same author(s)