Profile of the aerial biomass of Crotalaria pumila Ort. accumulated in summer

Authors

  • Jesús Adán Martínez-Zaragoza Posgrado en Producción Animal-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230. Tel. 595 9531621.
  • Pedro Arturo Martínez-Hernández Posgrado en Producción Animal-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230. Tel. 595 9531621
  • José Luis Zaragoza-Ramírez Posgrado en Producción Animal-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230. Tel. 595 9531621.
  • Enrique Cortés-Díaz Posgrado en Producción Animal-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230. Tel. 595 9531621.

DOI:

https://doi.org/10.29312/remexca.v14i7.3199

Keywords:

native legume, pods, total yield

Abstract

Crotalaria pumila Ort. is a legume native to Mexico with little information about its forage potential based on its profile of accumulation during the summer, so a study was carried out with the aim of determining the total yield and the yield by component during 2021 to generate base information to decide regarding the possibility of the species as a forage species. In an area with spontaneous C. pumila, nine weekly samplings were carried out, in which we determined the total yield and yield by components: leaf, stem, flower, and pods, their proportional contribution to the total and number per plant and plant height. The statistical analysis was for a completely randomized design with three repetitions, the independent variable was the number of days elapsed in the summer. As the summer progressed, total and pod yields increased (p< 0.05), stem yield remained constant (p> 0.05), and leaf yield (p< 0.05) and the number of leaves per plant decreased, the increase in pod yield occurred with an increase (p< 0.05) in the number of pods per plant. The high pod yield made it possible to ensure a natural reseeding of C. pumila. The total yield ranged from 9 to just over 20 t ha-1. The conclusion is that based on the total yield, Crotalaria pumila can be a forage species option.

Downloads

Download data is not yet available.

References

Alcântara, F. A. D. F.; Neto, A. E.; Paula, M. B. D.; Mesquita, H. A. D. and Muniz, J. A. 2000. Adubação verde na recuperação da fertilidade de um Latossolo Vermelho-Escuro degradado. Pesquisa Agropecuária Brasileira. 35(2):277-288. Doi: 10.1590/s0100-204x2000000200006. DOI: https://doi.org/10.1590/S0100-204X2000000200006

Alonso, E.; Igarzabal, A.; Oregui, L. M y Mandaluniz, N. 2005. Estimación del contenido de nitrógeno en heces de rumiantes mediante espectroscopía en el infrarrojo cercano (NIRS). Producciones agroganaderas: gestión eficiente y conservación del medio natural. XLV Reunión Científica de la SEEP. Sesión: Producción Animal. Gijón, Asturias, España. 1:89-96.

Bianco, L. and Cenzano, A. M. 2018. Native legumes: adaptive strategies and capacity for biological nitrogen fixation. Ecological implication. Idesia, Arica. 36(4):71-80. https://doi.org/10.4067/S0718-34292018005002601.

Broderick, G. A. 1995. Desirable characteristics of forge legumes for improving protein utilization in ruminants. J. Anim. Sci. 73(9):2760-2773. DOI: https://doi.org/10.2527/1995.7392760x

Calderón, D. R. G. y Rzedowski, J. 2005. Flora fanerogámica del Valle de México. 2a Ed. Instituto de Ecología, A. C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). https://www.biodiversidad.gob.mx/publicaciones/ librosDig/pdf/Flora-del-Valle-de-Mx1.pdf.

Coll, J. y Zarza, A. 1992. Leguminosas nativas promisorias: trébol polimorfo y babosita. Núm. 22. Unidad de Difusión e Información Tecnológica del INIA. http://www.inia.uy/Publicaciones/Documentos%20compartidos/111219240807154819.pdf.

Faji, M.; Kebede, G.; Feyissa, F.; Mohammed, K. and Mengistu, G. 2022. Yield, yield components, and nutritive value of perennial forage grass grown under supplementary irrigation. Advances in Agriculture. https://doi.org/10.1155/2022/ 5471533.

Fischler, M.; Wortmann, C. and Feil, B. 1999. Crotalaria (C. ochroleuca G. Don.) as a green manure in maize-bean cropping systems in Uganda. Field Crops Research. 61(2):97-107. Doi:10.1016/s0378-4290(98)00150-6. DOI: https://doi.org/10.1016/S0378-4290(98)00150-6

Fuhlendorf, S. D. and Engle, D. M. 2001. Restoring heterogeneity on rangelands: ecosystem management based on evolutionary grazing patterns. BioScience. 51(8):625-632. DOI: https://doi.org/10.1641/0006-3568(2001)051[0625:RHOREM]2.0.CO;2

Galindo-Pacheco, J. R. y Clavijo-Porras, J. 2009. Fenología del cultivo de arveja (Pisum sativum L. var. Santa Isabel) en la sabana de Bogotá en campo abierto y bajo cubierta plástica. Revista Porcoipa-Ciencia y Tecnología Agropecuaria. 10(1):5-15. DOI: https://doi.org/10.21930/rcta.vol10_num1_art:123

García, E. 2004. Modificaciones al sistema de clasificación köppen. 5ta. Ed. Universidad Nacional Autónoma de México (UNAM).

Grace, J. L.; Rideout, H. S.; Stanko, R.; Acosta, M. V.; Ortega, S. J. A. and Wester, D. B. 2019. Soil seed bank characteristics in rangelands with increasing invasion of Heteropogon contortus or Eragrostis Lehmanniana. Journal of Arid Environments. 170(2019):104009. Doi: 10.1016/j.jaridenv.2019.104009.

Kebede, G. Assefa, G.; Mengistu, A.; Tekletsadik,T.; Feyissa, F. and Minta, M. 2013. Evaluation of forage yield and yield components of different vetch species and their accessions grown under nitosol and vertisol conditions in the Central Highlands of Ethiopia. Ethio. J. Appl. Sci. Technol. 4:14-38.

Lindig-Cisneros, R. and Lara-Cabrera, S. 2004. Effect of scarification and growing media on seed germination of Crotalaria pumila (Ort.). Seed Science and Technology. 32(1):231-234. Doi:10.15258/sst.2004.32.1.25. DOI: https://doi.org/10.15258/sst.2004.32.1.25

Manzanero-Medina, G. I.; Vásquez-Dávila, M. A.; Lustre-Sánchez, H. and Pérez-Herrera, A. 2020. Ethnobotany of food plants (quelites) sold in two traditional markets of Oaxaca, Mexico. South African Journal of Botany. 130:215-223. Doi:10.1016/j.sajb.2020.01.002.

Mueller-Harvey, I.; Bee, G.; Dohme, M. F.; Hoste, H.; Karonen, M.; Kölliker, R.; Lüscher, A.; Niderkorn, V.; Pellikaan, W. F.; Salminen, J. P.; Skøt, L.; Smith, L. M. J.; Thamsborg, S. T.; Totterdell, P.; Wilkinson, I.; Williams, A. R.; Azuhnwi, B. N.; Baert, N.; Brinkhaus, A. G.; Copani, G.; Desrues, O.; Drake, C.; Engström, M.; Fryganas, C.; Girard, M.; Nguyen, T.; Huyen, K. K.; Malisch, C. J.; Mora, O. M.; Quijada, J.; Ramsay, A.; Ropiak, H. M.; Garry, C. and Waghorn, G. C. 2019. Benefits of condensed tannins in forage legumes fed to ruminants: Importance of structure, concentration, and diet composition. Crop Sci. 59:861-885. Doi: 10.2135/cropsci2017.06.0369.

Pagano, M. C. 2012. Native species for restoration and conservation of biodiversity in South America. In: Marin, L. and Kovac, D. Ed. Native species. Nova Science Publishers. 1-55 pp.

Rasmussen, J.; Kusliene, G.; Jacobsen, O. S.; Kuzyakov, Y. and Eriksen, J. 2013. Bicarbonate as tracer for assimilated C and homogeneity of 14C and 15N distribution in plants by alternative labeling approaches. Plant Soil. 371:191-198. Doi: 10.1007/s11104-013-1660-x. DOI: https://doi.org/10.1007/s11104-013-1660-x

Rodríguez, A. A.; Crespo, M. and Randel, P. F. 2015. Effect of the physical form of tropical legumes Cratylia argentea (Desv.) Kuntze, Calliandra calothyrsus Meisn. and Leucaena leucocephala (Lam. de Wit) on selective consumption by lambs J. Agric. Univ. P. R. 99(2):179-186.

Sadeghi, S. H. R.; Seghaleh, M. B. and Rangavar, A. S. 2013. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. CATENA. 102:55-61. https://doi.org/10.1016/j.catena.2011.01.003. DOI: https://doi.org/10.1016/j.catena.2011.01.003

SAS. 2011. Base SAS®9.3 Procedures guide: statistical pro-cedures. SAS Institute Inc., Cary, NC.

Schlaepfer, M. A.; Sax, D. F. and Olden, J. D. 2011. The potential conservation value of Non-Native Species. Conservation Biology. 25(3):428-437. Doi:10.1111/j.1523-1739.2010.01646.x. DOI: https://doi.org/10.1111/j.1523-1739.2010.01646.x

Schrei, A. 2020. Crotalaria longirostrata. https://www.academia.edu/43361980/Chipil% C3%ADn-Crotalaria-longirostrata.

USDA. United States Department of Agriculture. 2022. Agricultural research service, national plant germplasm system. Germplasm Resources Information Network (GRIN Taxonomy). National Germplasm Resources Laboratory, Beltsville, Maryland. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id= 12370.

Vázquez, Y. C.; Batis, M. A. I.; Alcocer, S. M. I.; Gual, D. M. y Sánchez, D. C. 1999. Árboles y arbustos nativos potencialmente valiosos para la restauración ecológica y la reforestación (J-084). Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM). Doi:10.13140/RG.2.2.11004.54407.

Velasco-López, J. L.; Soto-Ortiz, R.; Ail-Catzim, C. E.; Juárez, O.; Avilés-Marín, S. M. y Lozano del Río, A. J. 2020. Rendimiento de biomasa y grano en variedades de triticale en el valle de Mexicali. Revista Mexicana de Ciencias Agrícolas. 11(5):1097-1109. DOI: https://doi.org/10.29312/remexca.v11i5.2293

Vibrans, H. 2009. Crotalaria pumila Ort. http://www.conabio.gob.mx/malezasdemexico/ fabaceae/crotalariapumila/fichas/ficha.htm.

Witte, S. R. and Witte, J. S. 2015. Statistics. 10th. Ed. John Wiley & Sons. New York. 496 p.

Published

2023-11-01

How to Cite

Martínez-Zaragoza, Jesús Adán, Pedro Arturo Martínez-Hernández, José Luis Zaragoza-Ramírez, and Enrique Cortés-Díaz. 2023. “Profile of the Aerial Biomass of Crotalaria Pumila Ort. Accumulated in Summer”. Revista Mexicana De Ciencias Agrícolas 14 (7). México, ME:e3199. https://doi.org/10.29312/remexca.v14i7.3199.

Issue

Section

Articles

Most read articles by the same author(s)