Regeneration of leaf explants of five raspberry genotypes
DOI:
https://doi.org/10.29312/remexca.v14i6.3183Keywords:
Rubus idaeus L., organogenesis, plant hormonesAbstract
The efficiency in raspberry regeneration, from leaf explants, is limited due to several factors, among which the age of the explant and the genotype stand out. The aim of this research was to determine the effect of growth regulators on oxidation and in vitro regeneration from leaf explants of five raspberry genotypes in 2021. Doses and combinations of auxins and cytokinins were tested to induce direct organogenesis in leaf explants of raspberry genotypes; ‘C-6’, ‘Joan J.’, ‘A-1’, ‘UM-702’ and ‘Heritage’. The results showed that the regulator benzylaminopurine (BAP) decreased oxidation in genotypes ‘C-6’, ‘Joan J.’, ‘A-1’ and ‘Heritage’ by 36, 48, 60 and 68%, respectively, those that were supplemented with kinetin had a reduction in oxidation in the genotype ‘C-6’ (56%), when thidiazuron (TDZ) was added, oxidation decreased in the genotypes evaluated by 72, 64, 72, 84 and 68%, respectively. The greatest regeneration (number of shoots/explant) was with BAP (0.5 mg L-1) and TDZ (0.2 mg L-1) + indole butyric acid (IBA) (0.1 mg L-1) for the genotype ‘C-6’, and TDZ (0.2 mg L-1) + IBA (0.1 mg L-1) for ‘Joan J.’ and ‘Heritage’. In ‘A-1’ and ‘UMC-702’, the use of TDZ (0.2 mg L-1) alone is suggested. It is concluded that the use of growth regulators, alone or combined, decreases oxidation in leaf explants, and increases the survival and regeneration of shoots in all genotypes evaluated.
Downloads
References
Abdelwahd, R.; Hakam, N.; Labhilili, M. and Udupa, S. M. 2008. Use of an adsorbent and antioxidasnts to reduce the effects of leached phenolics in in vitro plantlet regeneration of faba bean. Afr. J. Biotechnol. 7(8):997-1002.
Adobkar, I.; Ahmed, M. S. and Elshabed, M. 2012. Plant tissue culture media. Annarita L. and MR Laura. Ed. In: recent advances in plant in vitro culture. IntechOpen. Doi: 10.5772/50569.
Allccaco, J. C. 2016. Estandarización para la propagación clonal in vitro de Rubus idaeus var. Heritage “frambuesa roja” de importancia comercial. Tesis Licenciada en Biología. Lima, Perú. Universidad Ricardo Palma, Facultad de Ciencias Biológicas. 123 p.
Azofeifa-Delgado, A. 2009. Problemas de oxidación y oscurecimiento de explantes cultivados in vitro. Agron. Mesoam. 20(1):153-175.
Bairú, M. W.; Stirk, W. A.; Dolezal, K. and Staden, J-Van. 2007. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can metapolin and its derivates serve as replacement for benzyladenine and zeatin. Plant Cell Tissue and Organ Culture. 90(1):15-23.
Bascopé, J. A. 2013. Realidad productiva de la frambuesa EE. UU. y México. Informe de Experto. Santiago, Chile. Oficina de Estudios y Políticas Agrarias. 42 p.
Bustillo-Avendaño, E.; Ibañez, S.; Sanz, O.; Sousa, B. J. A.; Gude, I.; Perianez-Rodríguez, J.; Micol, J. L.; Del Pozo, J. C.; Moreno-Risueno, M. A. and Pérez-Pérez, J. M. 2018. Regulation of hormonal control, cell reprogramming and patterning during de novo root organogenesis. Plant Physiology. 176(2):1709-1727.
Cappelletti, R.; Sabbadini, S. and Mezzetti, B. 2016. The use of TDZ for the efficient in vitro regeneration and organogénesis of strawberry and blueberry cultivars. Scientia Horticulturae. 207:117-124.
Debnath, S. C. 2014. Bioreactor-induced adventitious shoot regeneration affects genotype-dependent morphology but maintains clonal fidelity in red raspberry. In vitro Cellular and Developmental Biology-Plant. 50(6):777-788.
Dewir, Y. H.; Nurmansyah, H.; Naidoo, Y. and Teixeira da Silva, J. A. 2018. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Reports. 37(11):1451-1470.
Duncan, D. B. 1995. Multiple range and multiple F test. Biometrics. 11(1):1-42.
FAOSTAT. 2022. Database. Avalable online: https://www.fao.org/faostat/en/#home.
Fiola, J. A.; Hassan, M. A.; Swartz, H. J.; Bors, R. H. and McNicols, R. 1990. Effect of thidiazuron, light fluence rates and kanamycin on in vitro shoot organogenesis from excised Rubus cotiledons and leaves. Plant Cell Tissue and Organ Culture. 20(3):223-222.
Georgieva, M.; Kondakova, V. and Yancheva, S. 2020. A comparative study on raspberry cultivars in micropropagation. Bulgarian J. Agric. Sci. 26(3):527-532.
González, M. V.; López, M.; Valdes, A. E. and Ordas, R. J. 2009. Micropropagation of three berry fruit species using nodal segments from field-Grown plants. Annals Appl. Biol. 137(1):73-78.
Granados-Rubio, K. 2017. Variación somaclonal in vitro de frambuesa (Rubus ideaus L.) var. Josephine. Tesis de licenciatura. Facultad de Agrobiología “Presidente Juárez”. Universidad Michoacana de San Nicolás de Hidalgo. Uruapan, Michoacán, México. 46 p.
Gutiérrez, M. A.; Santacruz, R. F.; Cabrera, P. J. L. y Rodríguez, G. B. 2003. Mejoramiento genético vegetal in vitro. Revista Digital Científica y Tecnológica e- Gnosis. 1(4):0-19.
Hall, H. K.; Hummer, K. E.; Jamieson, A. R.; Jennings, S. N. and Weber, C. A. 2009. Raspberry breeding and genetics. Plant Breeding Review. 32:44-62.
Howell, S. H.; Lali, S. and Che, P. 2003. Cytokinins and shoot development. Trends in Plant Science. 8(9):453-459.
Hunková, J.; Libiakova, G. and Gajdosova, A. 2016. Shoot proliferation ability of selected cultivars of Rubus spp. as influenced by genotype and cytokinin concentration. J. Central Eur. Agric. 17(2):379-390.
Jacinto, A. M. E. 2018. Evaluación de tres niveles de auxinas y citoquininas para la obtención de plantas madre de rosa (Rosa sp.) variedad Freedom en condiciones in vitro. Rev. de la carrera de ingeniería Agronómica-UMSA. 4(2):1073-1081.
Jadán, M.; Ruíz, J.; Soria, N. and Mihai, R. A. 2015. Synthetic seed production and the induction of organogenesis in blackberry (Rubus glaucus Benth). Romanian Biotechnological Letters. 20(1):10134-10142.
Kim, C. and Dai, W. 2020. Plant regeneration of redraspberry (Rubus idaeus L.) cultivars ‘Joan J’ y ‘Polana’. In Vitro Cellular & Developmental Biology-Plant. 56(3):390-397.
Kumar, N. and Reddy, M. P. 2011. In vitro plant propagation: a review. J. For Environ Science. 27(3):61-72.
Ling, A. P. K.; Tan, K. P. and Hussein, S. 2013. Comparative effects of plant growth regulators on leaf and stem explants of Labisla pumila var. Alata. J. Zhejrang University Science B. 14(7):621-631.
Liu, C. Z.; Murch, S. J.; Demerdash, M. E. L. and Saxeria, P. K. 2003. Regeneration of the egyptian medicinal plant Artemesia juddaica L. Plant Cell Reports. 21:525-530.
Mazumdar, P.; Basu, A.; Paul A.; Mahanta, C. and Sahoo, L. 2020. Age and orientation of cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefaciens-mediated transformation in Jatropha curcas L. South African J. Bot. 76(2):337-344.
Méndez-Álvarez, D. y Abdelnour-Esquivel, A. 2014. Establecimiento in vitro de Terminalia amazonia Gmel. Excell. Rev. Forestal Mesoamericana Kurú. 11(27):07-21.
Meng, R.; Chen, T. H. H.; Fino, C. E. and Li, Y. 2004. Improving in vitro plant regeneration from leaf and petiole explant of ‘Marion’ blackberry. HortScience. 39(2):316-320.
Minas, G. J. and Neocleous, D. 2007. A protocol for rapid clonal micropropagation in vitro of primocane-fruiting red raspberry cultivars. Sistema Internacional de Ciencia y Tecnología Agrícolas AGRIS. 7 p.
Murashige, T. y Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 15(3):473-497.
Murvanidze, N.; Ameye, M.; Geelen, D. and Werbrouck, S. P. O. 2022. A calmodulin antagonist protects in vitro raspberries agaimst disturbed photosynthesis caused by constant light and cytokinin. Plant Cell, Tissue and Organ Culture. 148(1):73-80.
Palomo-Ríos, E.; Quesada, M. A.; Matas, A. J.; Pliego-Alfaro, F. and Mercado, J. A. 2018. The history and status of genetic transformation in berry crops. In: The Genomes of Rosaceous-Berries and Their Wild Relatives. Springer Nature. Spain. 139-160 pp.
Phineas, J. A. A. and Kumar, S. P. 2013. Inhibition of phenylpropanoid biosynthesis in Artemisa annua L.: A novel approach to reduce oxidative browning in plant tissue culture. PlosOne. 8(10):/e76802:1-13.
Restrepo-Osorio, C.; Gómez-Velasquez, F. A.; Gil-Correal, A.; Torres-Bonilla, J. M. and Urrea-Trujillo, A. I. 2018. In vitro propagation of avocado Persea americana Mill. cv. Hass through morfogénesis. Acta Agron. 67(1):160-167.
Ruíz-Anchondo, T.; Martínez, J. A.; Carrillo-Castillo, T.; Parra-Quezada, R. A.; Ojeda-Barrios, D. L. y Hernández-Rodríguez, A. 2018. Establecimiento in vitro de dos cultivares liberados de frutillas: fresa y frambuesa. Revista Mexicana de Ciencias Agrícolas. 9(4):799-812.
Schaller, G. E.; Bishopp, A. and Kieber, J. J. 2015. The Ying-Yang of hormones: cytokinin and auxin interactions in plant development. The Plant Cell. 27(1):44-63.
SIAP. 2021. Sistema de información agroalimentaria y pesquera. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). 2020. Atlas agroalimentario. Atlas Agroalimentarionube.siap.gob.mx/gobmx-publicaciones-siap/pag/ 2020/Atlas-Agro alimentario-2020.
SAS. 2002. Statistical Analysis System. Institute Inc. SAS/STAT. User’s Guide, version 9.0. Carey, N.C.
Taiz, L. and Zeiger, E. 2010. Plant Phisiology. 5th Ed. Sinaeur Associates Inc., Massachusetts. 778 p.
Turrens, J. 2003. Mithochondrial formation of reactive oxygen species. J. Physiol. 552(2):335-344.
Turk, B. A.; Swartz, H. J. and Zimmerman, R. H. 1994. Adventitious shoot regeneration from in vitro- cultured leaves of Rubus genotipes. Plant Cell. Tissue and Organ Culture. 38:11-17.
Wu, J. H.; Miller, S. A.; Hall, H. K. and Mooney, P. A. 2009. Factors affecting the efficiency of micropropagation fron llateral buds and shoots tips of Rubus. Plant Cell Tisssue and Organ Culture. 99:17-25.
Zawadzka, M. and Orlikowska, T. 2006. Factors modifying regeneration in vitro of adventitious shoot in five red raspberry cultivars. Journal of fruit and Ornamental. Plant Research. 14:105-115.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.