Direct organogenesis in landrace pineapple induced by 6-benzylaminopurine

Authors

  • José Rubén Torres Ruiz Laboratorio de Biotecnología Vegetal-Instituto Tecnológico de Tuxtla Gutiérrez-Tecnológico Nacional de México. Tuxtla Gutiérrez, Chiapas, México. CP. 29050.
  • Carlos Alberto Lecona Guzmán Laboratorio de Biotecnología Vegetal-Instituto Tecnológico de Tuxtla Gutiérrez-Tecnológico Nacional de México. Tuxtla Gutiérrez, Chiapas, México. CP. 29050. https://orcid.org/0000-0003-3382-8181
  • María del Carmen Silverio Gómez Campo Experimental Huimanguillo-INIFAP. Tabasco, México. CP. 86400 https://orcid.org/0000-0001-5458-5786
  • Federico Antonio Gutiérrez Miceli Laboratorio de Biotecnología Vegetal-Instituto Tecnológico de Tuxtla Gutiérrez-Tecnológico Nacional de México. Tuxtla Gutiérrez, Chiapas, México. CP. 29050. https://orcid.org/0000-0002-5379-1518
  • Nancy Ruiz Lau Consejo Nacional de Ciencia y Tecnología-Instituto Tecnológico de Tuxtla Gutiérrez-Tecnológico Nacional de México. Tuxtla Gutiérrez, Chiapas, México. CP. 29050 https://orcid.org/0000-0002-5624-8561
  • Nancy Santana Buzzy Unidad de Bioquímica y Biología Molecular de Plantas-Centro de Investigación Científica de Yucatán. Mérida, Yucatán, México. CP. 97205.

DOI:

https://doi.org/10.29312/remexca.v14i6.3159

Keywords:

6-benzylaminopurine, in vitro morphogenesis, meristem

Abstract

The production of pineapple (Ananas comosus L.) by conventional methods is limited mainly by the lack of availability of high-yielding suckers. Nevertheless, it has been shown that, through in vitro propagation methodologies such as somatic embryogenesis and organogenesis, it is possible to obtain high-yielding plants in a more efficient and controllable way. The objective of this study was to generate an efficient protocol of micropropagation of landrace pineapple (Ananas comosus L.) for the in vitro multiplication and conservation of this species, the study was carried out in 2021. The morphogenic response of the landrace pineapple was evaluated based on different explants (apical meristem and leaf), grown in Murashige and Skoog (MS) culture medium supplemented with various growth regulators: naphthaleneacetic acid (NAA) (0.5, 1 and 1.5 mg L-1), 6-benzylaminopurine (BAP) (1, 2 and 3 mg L-1) and 2,4-dichlorophenoxyacetic acid (2,4-D) (1, 2 and 4.5 mg L-1), as well as a regulator-free control treatment. The results showed that, of the explants evaluated, the best response was observed in the apical meristem, in which the formation of adventitious shoots was obtained 60 days after induction treatment, when the culture medium was supplemented with BAP at a concentration of 2 mg L-1, obtaining eight shoots/explant. The protocol developed is a key study for the mass propagation of landrace pineapple.

Downloads

Download data is not yet available.

References

Al-Saif, A. M.; Hossain, A. B. M. S. and Taha, R. M. 2011. Effects of benzylaminopurine and naphthalene acetic acid on proliferation and shoot growth of pineapple (Ananas comosus L. Merr) in vitro. Afr. J. Biotechnol. 10(27):5291-5295. DOI: https://doi.org/10.5897/AJB11.370

Amin, M. N.; Rahman, M. M.; Rahman, K. W.; Ahmed, R.; Hossain, M. S. and Ahmed, M. B. 2005. Large scale plant regeneration in vitro from leaf derived callus cultures of pineapple [Ananas comosus (L.) Merr. cv. Giant Kew]. International journal of botany, 1(2):128-132.

Atawia, A. A.; El-Latif, F. M.; El-Gioushy, S. F.; Sherif, S. S. and Kotb, O. M. 2016. Studies on micropropagation of pineapple (Ananas comosus L.). Middle East J. Agriculture. 5(2):224-232.

Ayenew, B.; Tadesse, T.; Gebremariam, E.; Mengesha, A. and Tefera, W. 2013. Efficient use of temporary immersion bioreactor (TIB) on pineapple (Ananas comosus L.) multiplication and rooting ability. J. Microbiol. Biotechnol. Food Scie. 2(4):2456-2465.

Badou, B. T.; Agbidinoukoun, A.; Cacaï, G. T.; Dossoukpèvi, R. C. and Ahanhanzo, C. 2018. Effects of system benzylaminopurine-adenine sulphate in combination with naphthalene acetic on in vitro regeneration and proliferation of pineapple (Ananas comosus) (L.) Mill var. comosus). Amer. J. Biotech. Biosci. 2(9):0001-0015.

Bidabadi, S. S. and Jain, S. M. 2020. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants. 9(6):702-721.

Blanco-Flores, H.; Vargas-Cedeño, T. E. and García-García, E. C. 2017. In vitro regeneration of Amazonian pineapple (Ananas comosus) plants ecotype Gobernadora. Rev. Colombiana de Biotecnología. 19(1):7-20. DOI: https://doi.org/10.15446/rev.colomb.biote.v19n1.65561

Cabral, J. R. S and Matos, A. P. 1995. Pineapple breeding for resistance to Fusariosis in Brazil. Rev. Fac. Agron. (Maracay). 21:137-145.

Coppens, G.; Leal, F. and Duval, M. F. 1997. Germplasm resources of pineapples. In: Horticultural Reviews. John Wiley & Sons, Inc. New York. 133-175 pp.

Daquinta, M. A.; Cisneros, A.; Rodríguez, Y.; Escalona, M.; Pérez, M. C.; Luna, I. and Borroto, C. G. 1997. Somatic embryogenesis in pineapple (Ananas comosus L.) Merr.). Acta Hort. 425(25):1-7. DOI: https://doi.org/10.17660/ActaHortic.1997.425.28

Escalona, M.; Lorenzo, J. C.; González, B.; Daquinta, M. A.; González, J. L.; Desjardins, Y. and Borroto, C. G. 1999. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Reports. 18(9):743-748. DOI: https://doi.org/10.1007/s002990050653

Firoozabady, E. and Moy, Y. 2004. Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In vitro Cell Dev. Biol. Plant. 40(1):67-74. DOI: https://doi.org/10.1079/IVP2003494

Hernández-Barbosa, G. 2018. Caracterización social y técnica del cultivo de la piña criolla (Ananas comosus). AgroProductividad. 4(1):3-11.

Hu, B.; Zhang, G.; Liu, W.; Shi, J.; Wang, H.; Qi, M. and Xu, L. 2017. Divergent regeneration‐competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration. 4(3):132-139. DOI: https://doi.org/10.1002/reg2.82

Ikeuchi, M.; Favero, D. S.; Sakamoto, Y.; Iwase, A.; Coleman, D.; Rymen, B. and Sugimoto, K. 2019. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology. 70(1):377-406.

Kiss, E.; Kiss, J.; Gyuali, G. and Heszky, L. E. 1995. A novel method for rapid micropropagation of pineapple. HortScience. 30(1):127-129.

Kulus, D. and Tymoszuk, A. 2020. Induction of callogenesis, organogenesis, and embryogenesis in non-meristematic explants of bleeding heart and evaluation of chemical diversity of key metabolites from callus. Inter. J. Mol. Sci. 21(16):5826.

Lecona-Guzmán, C. A.; Reyes-Zambrano, S.; Barredo-Pool, F. A.; Abud-Archila, M.; Montes-Molina, J. A.; Rincón-Rosales, R. and Gutiérrez-Miceli F. A. 2017. In vitro propagation of Agave americana by indirect organogénesis. HortSci. 52(7):996-999. DOI: https://doi.org/10.21273/HORTSCI10498-16

Lee, Z. H.; Hirakawa, T.; Yamaguchi, N. and Ito, T. 2019. The roles of plant hormones and their interactions with regulatory genes in determining meristem activity. Inter. J. Mol. Sci. 20(16):4065.

Medina-Rivas, M.; Mosquera, H. R. y Aguilar-Medina, C. 2014. Micropropagación clonal y enraizamiento ex vitro de tres cultivares de piña (Ananas comosus L. Merr.) del Chocó, Colombia. Rev. Biodiversidad Neotropical. 4(2):133-40. DOI: https://doi.org/10.18636/bioneotropical.v4i2.199

Nikumbhe, P. H.; Sonavane, P. N. and Sable, P. A. 2014. In vitro technology for propagation of pineapple (Ananas comosus) cv. KEW. Inter. J. Mol. Sci. 10(1):172-174.

Pineda, A.; Vargas, T. E. and García, G. E. 2014. Regeneración de Ananas comosus (L.) Merr, ecotipo Tabë Känä, mediante organogénesis indirecta. Bioagro. 26(3):135-142.

Philips, G. C. and Garda, M. 2019. Plant tissue culture media and practices: an overview. Vitr. Cell. Dev. Biol. Plant. 55(3):242-257.

Rahman, K. W.; Ahmed, M. B.; Rahman, M. M.; Amin, M. N.; Hossain, M. S. and Ahmed, R. 2005. Large scale plant regeneration in vitro from leaf derived callus cultures of pineapple [Ananas comosus (L.) Merr. cv. Giant Kew]. Int. J. Bot. 1(2):128-32. DOI: https://doi.org/10.3923/ijb.2005.128.132

Rebolledo, M. A.; Uriza, Á. D. E. y Ángel, P. A. L. 2011. La piña y su cultivo en México: Cayena Lisa y MD2. Libro técnico núm. 27. SAGARPA-INIFAP-CIRGOC. Campo Experimental Cotaxtla. Medellín, Veracruz, México. 309 p.

Reyes-Zambrano, S. J.; Lecona-Guzmán, C. A.; Ambrosio-Calderón, J. D.; Abud-Archila, M.; Rincón-Rosales, R.; Ruíz-Valdiviezo, V. M. and Gutiérrez-Miceli F. A. 2016. Plant growth regulators optimization for maximize shoots number in Agave americana L. by indirect organogenesis. Gayana Botanica. 73(1):124-131. DOI: https://doi.org/10.4067/S0717-66432016000100014

Rodríguez, Y.; Mosqueda, M.; Companioni, B.; Arzola, M.; Borras, O.; Pérez, M. C.; Lorenzo, J. C. and Santos, R. 2002. Bioassay for in vitro differentiation of cultivar pineapples resistance levels to Heart Rot disease. In vitro Cell. Dev. Biol. Plant. 38(6):613-616. DOI: https://doi.org/10.1079/IVP2002346

Santos, J. R. and Matos, A. P. 1995. Pine- apple breeding for resistance to Fusariosis in Brazil. Rev. Fac. Agron. (Maracay). 21:137-145. DOI: https://doi.org/10.1111/j.1474-919X.1995.tb03232.x

Sarkar, T.; Nayak, P. and Chakraborty, R. 2018. Pineapple [Ananas comosus (L.)] product processing techniques and packaging: a Review. IIOAB Journal. 9(4):6-12.

SIAP (Servicio de Información Agroalimentaria y Pesquera). 2021. Panorama Agroalimentario Ed. 2021. México. 121-122 pp.

Su, Y. H.; Tang, L. P.; Zhao, X. Y. and Zhang, X. S. 2021. Plant cell totipotency: insights into cellular reprogramming. J. Integrative Plant Biol. 63(1):228-243.

Sugiyama, M. 1999. Organogénesis in vitro. Curr. Opin. Plant Biol. 2(1):61-64. DOI: https://doi.org/10.1016/S1369-5266(99)80012-0

Torres-Ávila, A.; Aguilar-Ávila, J.; Santoyo-Cortés, V. H.; Uriza-Ávila, D. E.; Zetina-Lezama, R. y Rebolledo-Martínez, A. 2018. La piña mexicana frente al reto de la innovación. Avances y retos en la gestión de la innovación. Universidad Autónoma Chapingo (UACH). 25 p.

Traas, J. 2018. Organogenesis at the shoot apical meristem. Plants. 8(1):1-9.

Usman, I. S.; Abdulmalik, M. M.; Sani, A. L. A. and Muhammad, A. S. 2013. Development of an efficient protocol for micropropagation of pineapple (Ananas comosus L. var. Smooth Cayenne). Afr. J. Agric Res. Nairobi. 8(18):2053-2056.

Vélez-Izquierdo, A.; Espinoza-García, J. A.; Uresti-Gil, J.; Jolalpa-Barrera, J. L.; Rangel-Quintos, J. and Uresti-Durán, D. 2020. Estudio técnico-económico para identificar áreas con potencial para producir piña en el trópico húmedo de México. Rev. Mex. Cienc. Agríc. 11(7):1619-1632. DOI: https://doi.org/10.29312/remexca.v11i7.2594

Wang, J.; Su, Y.; Kong, X.; Ding, Z. and Zhang, X. S. 2020. Initiation and maintenance of plant stem cells in root and shoot apical meristems. Abiotech. 1-11 pp.

Yapo, E. S.; Kouakou, T. H.; Kone, M.; Kouadio, J. Y.; Kouame, P. and Merillon, J. M. 2011. Regeneration of pineapple (Ananas comosus L.) plant through somatic embryogenesis. J. Plant Biochem. Biotechnol. 20(2):196-204. DOI: https://doi.org/10.1007/s13562-011-0046-5

Zeng, M.; Hu, B.; Li, J.; Zhang, G.; Ruan, Y.; Huang, H. and Xu, L. 2016. Stem cell lineage in body layer specialization and vascular patterning of rice root and leaf. Science Bulletin. 61(11):847-858. DOI: https://doi.org/10.1007/s11434-015-0849-1

Published

2023-08-18

How to Cite

Torres Ruiz , José Rubén, Carlos Alberto Lecona Guzmán, María del Carmen Silverio Gómez, Federico Antonio Gutiérrez Miceli, Nancy Ruiz Lau, and Nancy Santana Buzzy. 2023. “Direct Organogenesis in Landrace Pineapple Induced by 6-Benzylaminopurine”. Revista Mexicana De Ciencias Agrícolas 14 (6). México, ME:e3159. https://doi.org/10.29312/remexca.v14i6.3159.

Issue

Section

Articles