Improvement of soil hydraulic properties in soybean cultivation through subsoiling
DOI:
https://doi.org/10.29312/remexca.v14i5.3102Keywords:
Soconusco, compaction, plow floorAbstract
The preparation of the soil for soybean sowing in El Soconusco, Chiapas, is carried out intensively and under wet soil conditions, which causes the soil to compact and the ‘plow floor’ to be formed approximately 35 cm deep. ‘The plow floor’ reduces infiltration and its hydraulic conductivity at saturation. The rupture of the ‘plow floor’ by subsoiling increases infiltration and improves the hydraulic properties of the soil. Therefore, the objective of this work was to evaluate for three consecutive years (2017 to 2019) the infiltration in three soil management systems: subsoiling (SUB), fallowing (FAL) and harrowing (HAR). Soil samples were taken from 0-30 cm depth before applying the treatments to estimate their physical and hydraulic properties. Then, SUB, FAL and HAR were applied on an area of 1.5 ha, respectively. Each year the infiltration was measured three times by the double cylinder method for approximately 10 h. Rates of infiltration, accumulated infiltration and hydraulic conductivity at saturation were determined. The results confirmed higher rates of infiltration with subsoiling followed by harrowing, fallowing, respectively; likewise, the accumulated infiltration as the hydraulic conductivity at saturation showed the same behavior. The rupture of the ‘plow floor’ through subsoiling increased infiltration, hydraulic conductivity at saturation and yield components.
Downloads
References
Ahmad, N.; UL-Hassan, F. and Qadir, G. 2007. Effect of subsurface soil compaction and improvement measures on soil properties. Int. J. Agric. Biol. 9(3):509-513.
Alakukku, L.; Weisskopf, P.; Chamen, W. C. T.; Tijink, F. G. J.; Van Der Linden, J. P.; Pires, S.; Sommer, C. and Spoor, G. 2003. Prevention strategies for field traffic induced subsoil compaction: a review. Part 1. Machine soil interactions. Soil Till Res. 73:145-160. DOI: https://doi.org/10.1016/S0167-1987(03)00107-7
Álvarez, C. R; Taboada, M. A; Bustingorri, C. y Gutiérrez, B. F. H. 2006. Descompactación de suelos en siembra directa: efectos sobre las propiedades físicas y el cultivo de maíz. Ciencia del Suelo. 24(1):1-10.
Bertolino, A. V. F.; Nelson, F. N. F. and Miranda, J. P. L. 2010. Effects of plough pan development on surface hydrology and on soil physical properties in southeastern brazilian plateau. J. Hydrol. 393(1-2):94-104. DOI: https://doi.org/10.1016/j.jhydrol.2010.07.038
Cabria, F. N y Culot, J. P. 1999. Sortividad y conductividad hidráulica saturada de udoles del Sudeste Bonaerense, Argentina. Ciencia del Suelo. 17:8-19.
Cabria, F. N. y Culot, J. P. 2000. Efectos de la labranza convencional sobre la sortividad y la conductividad hidráulica saturada en udoles del sureste de la provincia de Buenos Aires. Ciencia Suelo. 18:1-8.
Campbell, G. S. 1985. Soil physics with basic: transport models for soil-plant systems. Elsevier. 149 p.
Chow, V.; Maidment, D. and Mays, L. 1988. Applied hydrology Ed. McGraw-Hill, New York. 572 p.
Czarnes, S.; Hallett, P. D. and Bengough, A. G. 2000. Root and microbial derived mucilage’s affect soil structure and water transport. Eur. J. Soil Sci. 51:435-443. DOI: https://doi.org/10.1046/j.1365-2389.2000.00327.x
Desale, K. A.; Melesse, T. L. and Abdu, A. M. 2012. Effect of winged subsoiler and traditional tillage integrated with fanya juju on selected soil physic-chemical and soil water properties in the northwestern highlands of Ethiopia. East Afr. J. Sci. 6(2):105-116.
Green, W. H and Ampt, G. A. 1911. Studies on soil physics: I. Flow of air and water through soils. J. Agr. Sci. 4:11-24. DOI: https://doi.org/10.1017/S0021859600001441
Hagedorn, F. and Bundt, M. 2002. The age of preferential flow paths. Geoderma. 108(1-2):119-132. https://doi.org/10.1016/S0016-7061(02)00129-5. DOI: https://doi.org/10.1016/S0016-7061(02)00129-5
Heatherly, L. G.; Spurlock, S. R. 2001. 2001. Economics of fall tillage for early and conventional soybean plantings in the mi Southern USA. Agron. J. 93(3):511-516. DOI: https://doi.org/10.2134/agronj2001.933511x
Hillel, D. 2003. Introduction to environmental soil physics, Academic press. New York, USA.
Holtan, H. N. 1961. A concept for infiltration estimates in watershed engineering. Agricultural Research Service, United States Department of Agriculture, USA, 41-51 pp.
Horton, R. E.; Ankeny, M. D and Allmaras, R. R. 1994. Effects of compaction on soil hydraulic properties. Developments in agricultural engineering. 11:141-165. DOI: https://doi.org/10.1016/B978-0-444-88286-8.50015-5
Horton, R. E. 1940. An approach towards a physical interpretation of infiltration capacity. Soil Sci. Soc. Am. Proc. 5(C):399-417. DOI: https://doi.org/10.2136/sssaj1941.036159950005000C0075x
Klute, A. and Dirksen, C. 1986. Hydraulic conductivity and diffusivity: laboratory methods. In: methods of soil analysis, Part. 1, physical and mineralogical methods, monograph Nº 9. ASA, SSSA, Madison, USA. 687-734 pp. DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c28
Kostiakov, A. N. 1932. On the dynamics of the coefficient of water-percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. In: transactions of 6th congress of international soil science society, Moscow, Part A. 17-21 pp.
Kuipers, H. and Van de Zande, J. C. 1994. Quantification of traffic systems in crop production. Ed. soil compaction in crop production. Elsevier, Amsterdam. 417-446 pp. DOI: https://doi.org/10.1016/B978-0-444-88286-8.50026-X
Kutilek, M. and Nielsen, D. R. 1994. Soil hydrology: texbook for students of soil science, agriculture, forestry, geoecology, hydrology, geomorphology and other related disciplines. Catena Verlag.
Kutílek, M. and Krejča, M. 1987. Three-parameter infiltration equation of Philip type (in Czech). Vodohosp. Čas. 35:52-61.
Lal, R. and Shukla, M. K. 2004. Principles of soil physics. Marcel Dekker, New York. 716 p. DOI: https://doi.org/10.4324/9780203021231
Lampurlanes, B. J.; Angas, P. and Cantero, M. C. 2001. Root growth, soil water content and yield of barley under different tillage systems on two soils in semi-arid conditions. Field Crops Res. 69(1):27-40. DOI: https://doi.org/10.1016/S0378-4290(00)00130-1
Mohanty, M.; Bandyopadhyay, K. K.; Painuli, K. D.; Ghosh, K. A.; Misra, K. P. and Hati, K. M. 2007. Water transmission characteristics of a vertisol and water use efficiency of rainfed soybean under subsoiling and manuring. Soil Tillage Res. 93:420-428. DOI: https://doi.org/10.1016/j.still.2006.06.002
Morbidelli, R.; Corradini, C.; Saltalippi, C.; Flammini, A. and Rossi, E. 2011. Infiltration-soil moisture redistribution under natural conditions: experimental evidence as a guideline for realizing simulation models, Hydrology and Earth System Sciences. 15(19):2937-2945. DOI: https://doi.org/10.5194/hess-15-2937-2011
Philip, J. R. 1957. The theory of infiltration: 1 The infiltration equation and its solution. Soil Sci. 83(5):345-357. DOI: https://doi.org/10.1097/00010694-195705000-00002
Philip, J. R. 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci. 84(3):257-264. DOI: https://doi.org/10.1097/00010694-195709000-00010
Sharma, P.; Tripathi, R. P.; Singh, S. and Kumar, R. 2004. Effect of tillage on soil physical properties and crop performance under rice-wheat system. J. Indian Soc. Soil Sci. 52(1):12-16.
Smith, R. E.; Smettem, K. R.; Broadbridge, P. and Woolhiser, D. 2002. Infiltration theory for hydrologic applications. American Geophysical Union. Washington, DC.; 210 p. DOI: https://doi.org/10.1029/WM015
Solhjou, A. A. and Niazi, A. J. 2001. Effect of subsoiling on soil physical properties and irrigated wheat yield. J. Agric. Eng. Res. 7:14-21.
Soracco, C. G. 2009. Efecto de la compactación sobre el sistema poroso del suelo en diferentes situaciones de labranza: modelización y realidad (tesis). Universidad Nacional de La Plata.
Sushil, K.; Mukes, J.; Vijaya, R.; Anil, K.; Vinod, K. and Naresh. 2018. Effect of various tillage practices on soil physical properties. Int. Curr. Microbiol. App. Sci. 7(03):1591-1596. DOI: https://doi.org/10.20546/ijcmas.2018.703.191
Swartzendruber, D. 1993. Revised attribution of the power form infiltration equation. Water Resour. Res. 29(7):2455-2456. DOI: https://doi.org/10.1029/93WR00612
Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.; Padarian, J.; Schaap, M.; Tóth, B.; Verhoef, A.; Vanderborght, J.; van der Ploeg, M.; Weihermüller, L.; Zacharias, S.; Zhang, Y. and Vereecken, H. 2002. Ped transfer functions in earth system science: challenges and perspectives, reviews of geophysics. 55(4): 1199-1256. https://doi. org/10.1002/2017RG000581. DOI: https://doi.org/10.1002/2017RG000581
Van-Ouwerkerk, C. and Soane, B. D. 1994. Conclusions and recommendations for further research on soil compaction in crop production. In: Soane, B.D., van Ouwerkerk, C. (Eds.), Soil Compaction in Crop Production. Elsevier, Amsterdam. 11:627-642. DOI: https://doi.org/10.1016/B978-0-444-88286-8.50034-9
Van-Wie. J. B; Adam, J. L and Ullman, J. L. 2013. Conservation tillage in dryland agriculture impacts watershed hydrology. J. Hydrol. 438:26-38. DOI: https://doi.org/10.1016/j.jhydrol.2012.12.030
Wesley, Richard and Elmore, Carroll and Spurlock, S. 2001. Deep tillage and crop rotation effects on cotton, soybean, and grain sorghum on clayey soils. Agron. J. 9310.2134/agronj2001.931170x.
Zibilske, L. M. and Bradford, J. M. 2007. Soil aggregation, aggregate carbon and nitrogen and moisture retention induced by conservation tillage. Soil Sci. Soc. Am. J. 71:793-802. 10.2136/sssaj2006.0217. DOI: https://doi.org/10.2136/sssaj2006.0217
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.