Selection of corn populations based on early biomass production under saline stress conditions

Authors

  • Jesús Ulises Félix-Lizárraga Maestría en Ciencias en Fitomejoramiento
  • Norma Angélica Ruiz-Torres Centro de Capacitación y Desarrollo en Tecnología de Semillas
  • Froylán Rincón-Sánchez Maestría en Ciencias en Fitomejoramiento
  • Francisco Javier Sánchez-Ramírez Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Fernando Borrego-Escalante Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315.
  • Adalberto Benavides Mendoza Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315.

DOI:

https://doi.org/10.29312/remexca.v14i3.3091

Keywords:

Zea mays L., race Raton, salinity stress, genetic diversity

Abstract

Native corn populations have attributes that differentiate them because of their area of adaptation to adverse biotic and abiotic conditions that can be used in selection schemes. The objectives of the present research were to analyze dry matter production in early stages of development and selection of corn populations under conditions of salinity stress. One hundred eighteen corn populations of the Ratón race and two controls (hybrids) were evaluated in trials conducted in greenhouse in two contrasting environments in 2021 (with and without saline stress). Dry root weight, dry stem weight and chlorophyll content were determined. In the environments, statistical differences were found in dry stem weight (p≤ 0.01) and chlorophyll content (p≤ 0.05), while in DRW there was no difference. In the genotypes (populations and controls) statistical differences (p≤ 0.01) were found for the variables of dry weight, except in the chlorophyll content. There was no evidence of interaction of genotypes × environments in any of the variables studied. Saline stress conditions had an effect relative to non-stress conditions with a reduction of 25.9% in DRW and of 47.5% in dry stem weight. It is determined that there is genetic variation in the studied populations of the Ratón race for dry root weight and dry stem weight with an estimate of broad-sense heritability of 0.6 and 0.62, respectively, which allows selection of genotypes in the early stage of development. Of the 25 superior genotypes, 10 were identified in the favorable environment (control), six in the stress (salinity tolerant) environment and nine with an average behavior across environments.

Downloads

Download data is not yet available.

References

Abdel-Ghani, A. H.; Kumar, B.; Reyes-Matamoros, J.; González-Portilla, P. J.; Jansen, C.; San Martin, J. P.; Lee, M. and Lübberstedt, T. 2013. Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica. 189(1):123-133. Ali, Q.; Muhammad, A.; Ali, F.; Muhammad, S.; Manzoor, M.; Khan, N. H.; Basra, S. M. A. and Mustafa, H. S. B. 2013. Genetic advance, heritability, correlation, heterosis and heterobeltiosis for morphological traits of maize (Zea mays L). Albanian J. Agric. Sci. 12(4):689-698. DOI: https://doi.org/10.1007/s10681-012-0759-0

Arce-Romero, A. R.; Monterroso-Rivas, A. I.; Gómez-Diaz, J. D. and Palacios-Mendoza, M. A. 2018. Potential yields of maize and barley with climate change scenarios and adaptive actions in two sites in Mexico. In: advances in information and communication technologies for adapting agriculture to climate change. Angelov, P.; Iglesia, J. A. and Corrales, J. C. Ed. Advances in Intelligent Systems and Computing. 687(1):197-208. Doi.org/10.1007/978-3-319-70187-5-15. DOI: https://doi.org/10.1007/978-3-319-70187-5_15

Bänziger, M.; Edmeades, G. O.; Beck, D. L. y Bellon, M. R. 2012. Mejoramiento para aumentar la tolerancia a sequía y a deficiencia de nitrógeno en el maíz: de la teoría a la práctica. Centro Internacional de Maíz y Trigo (CIMMYT). El Batán, Estado de México, DF. 61 p.

Correndo, A. A. y García, F. O. 2012. Concentración de nutrientes en planta como herramienta de diagnóstico: cultivos extensivos. Archivo Agronómico. 14(1):1-8.

Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics. 4th. Ed. Longman, Harlow, England. 464 p.

Farooq, M.; Hussain, M.; Wakeel, A. and Siddique, K. H. M. 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35(2):461-481. Doi: 10.1007/s13593-015-0287-0. DOI: https://doi.org/10.1007/s13593-015-0287-0

Giaveno, C. D. R.; Vasconcelos, R. G.; Maia, S. and Ferraz, O. R. 2007. Screening of tropical maize for salt stress tolerance. Crop Breed. Appl. Biotechnol. 7(3):304-313. Doi: 10.12702/1984-7033.v07n03a10. DOI: https://doi.org/10.12702/1984-7033.v07n03a10

González-Martínez, J.; Rocandio-Rodríguez, M.; Contreras-Toledo, A. R.; Joaquín-Cancino, S.; Vanoye-Eligio, V.; Chacón-Hernández, J. C. y Hernández-Bautista, A. 2020. Diversidad morfológica y agronómica de maíces nativos del altiplano de Tamaulipas, México. Rev. Fitotec. Mex. 43(4):361-370.

Hallauer, A. R.; Carena, M. J. and Miranda, F. J. B. 2010. Quantitative genetics in maize breeding. Handbook of Plant Breeding Vol. 6. Third edition. 89 p. Springer Science and Business Media, LLC 2010. New York. Doi:10.1007/978-1-4419-0766-0. Haseeb, A.; Nawaz, A.; Rao, M. Q. A.; Ali, Q. and Malik, A. 2020. Genetic variability and association among seedling traits of Zea mays under drought stress conditions. Biol. Clin. Sci. Res. J. 20(1):1-5. Doi: https://doi.org/10.54112/bcsrj.v2020i1.20.

Iqbal, S.; Hussain, S.; Abdul, Q. M.; Ashraf, M. and Saifullah, S. 2020. The response of maize physiology under salinity stress and its coping strategies. In: Plant Stress Physiology. Hossain, A. Ed. IntechOpen. 1-25 pp. Doi: http://dx.doi.org/10.5772/ intechopen.92213.

Khan, A. A.; Ali, R. S. and McNeilly, T. 2003. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica. 131(3):81-89. Doi:10.1023/A:1023054706489. DOI: https://doi.org/10.1023/A:1023054706489

Konica Minolta Inc. 2009. A lightweight handheld meter for measuring the chlorophyll content of leaves without causing damage to plants. Chlorophyll meter Spad-502plus. https://www.konicaminolta.com/instruments/download/catalog/color/pdf/spad502plus-cat alog-eng.pdf.

Leach, K. A.; Hejlek, L. G.; Hearne, L. B.; Nguyen, H. T.; Sharp, R. E. and Davis, G. L. 2011. Primary root elongation rate and abscisic acid levels of maize in response to water stress. Crop Sci. 51(1):157-172. Doi: 10.2135/cropsci2009.12.0708. DOI: https://doi.org/10.2135/cropsci2009.12.0708

Leland, E. F. and Maas, V. E. 1999. Crop response and management of salt-affected soils. In: handbook of plant and crop stress, second edition. M. Pessarakli. 169-201 pp. DOI: https://doi.org/10.1201/9780824746728.ch8

Li, R.; Zeng, Y.; Xu, J.; Wang, Q.; Wu, F.; Cao, M.; Lan, H.; Lui, Y. and Lu, Y. 2015. Genetic variation for maize root architecture in response to drought stress at the seedling stage. Breed. Sci. 65(4):298-307. Doi:10.1270/jsbbs.65.298. DOI: https://doi.org/10.1270/jsbbs.65.298

Marcos-Filho, J. 2015. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agríc. 72(4):363-374. http://dx.doi.org/10.1590/0103-9016-2015-0007. Masood, M.; Ahsan, M.; Sadaqat, H. A. and Awan, F. 2020. Screening of maize (Zea mays L.) inbred lines under water deficit conditions. Biol. Clin. Sci. Res. J. 7(1):1-6. Doi: https://doi.org/10.54112/bcsrj.v2020i1.7. DOI: https://doi.org/10.1590/0103-9016-2015-0007

Rincon-Sanchez, F. and Ruiz-Torres, N. A. 2017. Genetic potential and usefulness of native maize populations in developing novel germplasm for current and upcoming goals. In: rediscovery of Landraces as a Resource for the Future. Grillo, O. Ed. IntechOpen. 97-111 pp. Doi: 10.5772/intechopen.71360.

SAS Institute Inc. 2018. SAS/STAT® 15.1 User’s Guide. Cary, NC. SAS Institute Inc., Cary, NC, USA. 4141 p.

Yan, W. 2014. Crop variety trials. Data management and analysis. John Wiley and Sons Inc., MA, USA. 351 p. DOI: https://doi.org/10.1002/9781118688571

Published

2023-05-04

How to Cite

Félix-Lizárraga, Jesús Ulises, Norma Angélica Ruiz-Torres, Froylán Rincón-Sánchez, Francisco Javier Sánchez-Ramírez, Fernando Borrego-Escalante, and Adalberto Benavides Mendoza. 2023. “Selection of Corn Populations Based on Early Biomass Production under Saline Stress Conditions”. Revista Mexicana De Ciencias Agrícolas 14 (3). México, ME:449-58. https://doi.org/10.29312/remexca.v14i3.3091.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>