Productivity and stability of free-pollinated corn varieties in the High Valleys of Mexico

Authors

  • Enrique I. Canales Islas Campo Experimental Santiago Ixcuintla-INIFAP. Carretera Internacional México-Nogales km 6, Entronque a Santiago Ixcuintla, Santiago Ixcuitla, Nayarit, México. CP. 63300
  • Consuelo López López Secretaria Ejecutiva de la Comisión Intersecretarial de Bioseguridad de Organismos Genéticamente Modificados. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Ciudad de México. CP. 03940
  • Alejandro Espinosa Calderón Campo Experimental Santiago Ixcuintla-INIFAP. Carretera Internacional México-Nogales km 6, Entronque a Santiago Ixcuintla, Santiago Ixcuitla, Nayarit, México. CP. 63300
  • Margarita Tadeo Robledo Facultad de Estudios Superiores Cuautitlán. Teoloyucan km 2.5, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México. CP. 54714
  • Antonio Turrent Fernández Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5. Coatlinchán, Texcoco, Estado de México. CP. 56250
  • Benjamín Zamudio González Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5. Coatlinchán, Texcoco, Estado de México. CP. 56250

DOI:

https://doi.org/10.29312/remexca.v15i6.3032

Keywords:

Zea mays L., free-pollinated varieties, productivity, stability

Abstract

In the High Valleys of Central Mexico, improved white-grained and free-pollinated corn varieties are needed for medium-productivity conditions. This research aimed to determine the productive capacity and the stability of grain yield of a group of free-pollinated corn varieties using the AMMI procedure. Nine varieties of conical race of intermediate cycle corn were evaluated, four experimental from the Cuautitlán Faculty of Higher Studies of the National Autonomous University of Mexico, two experimental from the National Institute of Forestry, Agricultural and Livestock Research-Valle de México Experimental Field and three commercial control varieties from the National Institute of Forestry, Agricultural and Livestock Research- Valle de México Experimental Field, in the spring-summer cycle of 2016 to 2019, in two locations, the Cuautitlán Faculty of Higher Studies of the National Autonomous University of Mexico and the National Institute of Forestry, Agricultural and Livestock Research-Valle de México Experimental Field. A randomized complete block experimental design with four replications was used. Yield data and other variables were analyzed in a factorial arrangement, considering environments, genotypes, and their interactions as sources of variation. The AMMI procedure was used to evaluate the varieties for their stability in grain yield. The combined analysis of variance detected highly significant differences for all variables between environments, genotypes, and the genotype-by-environment interaction. The overall mean yield was 5 090 kg ha-1. In the comparison of means between environments, in 2017, the Cuautitlán Faculty of Higher Studies of the National Autonomous University of Mexico had the best yield, with 9 163 kg ha-1. The Maíz Texotli Puma variety expressed the best yield with 6 491 kg ha-1. The free-pollinated corn varieties with the best stability in grain yield were V 80 Turrent and V 23 Huamantla.

Downloads

Download data is not yet available.

References

Carballo, C. A. y Mendoza, R. M. 1981. V 23 Huamantla nueva variedad temporal de maíz para el estado de Tlaxcala. Secretaría de Agricultura y Recursos Hidráulicos (SARH). Instituto Nacional de Investigaciones Agrícolas (INIFAP)-Centro de Investigaciones Agrícolas de la Mesa Central. Campo Experimental Valle de México (CEVAMEX). Folleto técnico núm. 6. Chapingo, Estado de México. 6 p.

DOF. 2002. Diario Oficial de la Federación. Productos alimenticios no industrializados para consumo humano-cereales. Parte I: maíz blanco para proceso alcalino para tortillas de maíz y productos de maíz nixtamalizado-especificaciones y métodos de prueba.

DOF. 2023. Diario Oficial de la Federación. Decreto por el que se establecen diversas acciones en materia de glifosato y maíz genéticamente modificado.

Espinosa, C. A.; Tadeo, R. M.; Gómez ,M. N.; Sierra, M. M.; Virgen, V. J.; Palafox, C. A.; Caballero, H. F.; Vázquez, C. G.; Rodríguez, M. F.; Valdivia, B. R. 2010. ‘V-54 A’, nueva variedad de maíz de grano amarillo para siembras de temporal retrasado en los Valles Altos de México. Revista Mexicana de Ciencias Agrícolas. 1(4):677-680.

Espinosa, C. A.; Tadeo, R. M.; Gómez, M. N.; Sierra, M. M.; Virgen, V. J.; Palafox, C. A.; Caballero, H. F.; Vázquez, C. G.; Rodríguez, M. F.; Valdivia, B. R.; Arteaga, E. I.; González, R. I. 2011. ‘V-55 A’, variedad de maíz de grano amarillo para los Valles Altos de México. Rev. Fitotec. Mex. 34(2):149-150.

García, D. M. E. 2004. Modificaciones al sistema de clasificación climática de Köppen. Instituto Nacional de Geografía-Universidad Nacional Autónoma de México (UNAM). México. 246 p.

Gauch, Jr. H. G. 2013. A simple protocol for AMMI analysis of yield trials. Crop Science. 37(5):311-326. Doi.org/10.2135/cropsci2013.04.0241.

Gollob, H. F. 1968. A statistical model which combines features of factor analytic e analysis of variances techniques. Psychometrika. 33:73-115. https://doi.org/10.1007/BF02289676.

Li, S.; Lei, Y. D.; Zhang, Y. Y.; Liu, J. G.; Shi, X. Y.; Jia, H.; Wang, C.; Chen, F. and Chu, Q. Q. 2019. Rational trade-offs between yield increase and fertilizer inputs are essential for sustainable intensification: a case study in wheat-maize cropping systems in China. Science of the Total Environment. 679:328-336. https://doi.org/10.1016/j.scitotenv.2019.05.085.

López, L. C.; Tadeo, R. M.; Espinosa, C. A.; García, Z. J.; Benítez, R. I.; Vázquez, C. M. y Carrillo, S. J. 2017. Productividad de cruzas simples de maíz con calidad de proteína en Valles Altos de México. México. Revista Mexicana de Ciencias Agrícolas. 8(3):559-570. https://doi.org/10.29312/remexca.v8i3.31.

Mushayi, M.; Shimelis, H.; Derera, J.; Shayanowako, A. I. T. and Mathew, I. 2020. Multi-environmental evaluation of maize hybrids developed from tropical and temperate lines. Euphytica. 216(5):84-90. https//doi.org/10.1007/s10681-020-02618-6.

SAS Institute Inc. 2004. SAS/STAT® 9.1 User’s Guide. Cary, NC: SAS Institute Inc. USA.

SIAP. 2022. Panorama Agroalimentario 2022. Servicio de Información Agroalimentaria y Pesquera (SIAP). 94 p.

Vélez-Torres, M.; García-Zavala, J. J.; Lobato-Ortiz, R.; Benítez-Riquelme, I.; López-Reynoso, J. J.; Mejía-Contreras, J. A. y Esquivel-Esquivel, G. 2018. Estabilidad del rendimiento de cruzas dialélicas entre líneas de maíz de alta y de baja aptitud combinatoria general. Revista Fitotecnia Mexicana. 41(2):167-175. https://doi.org/10.35196/rfm.2018.2.167-175.

Wang, S. Q.; Guo, Q.; Wang, S. D. and Chen, Z. Y. 2020. Selecting the superior genotype of summer maize hybrids in mega-environments using AMMI model and GGE biplot in China. Applied Ecology and Environmental Reserch. 18(2):3593-3614.

Wolde, L.; Keno, T.; Tadesse, B.; Bogale, G. and Abebe, B. 2018. Mega-environment targeting of maize varieties using AMMI and GGE-biplot analysis in Ethiopia. Ethiopian Journal of Agricultural Sciences. 28(2):65-84.

Yan, W.; Hunt, L. A.; Sheng, Q. and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science. 40(3):597-605. https://doi.org/10.2135/cropsci2000.403597x.

Zobel, R. W.; Wright, M. J. and Gauch, H. G. Jr. 1988. Statistical analysis of a yield trial. Agronomy Journal. 80(3):388-393. https://doi.org/10.2134/agronj1988.00021962008000030002x.

Published

2024-09-17

How to Cite

Canales Islas, Enrique I., Consuelo López López, Alejandro Espinosa Calderón, Margarita Tadeo Robledo, Antonio Turrent Fernández, and Benjamín Zamudio González. 2024. “Productivity and Stability of Free-Pollinated Corn Varieties in the High Valleys of Mexico”. Revista Mexicana De Ciencias Agrícolas 15 (6). México, ME:e3032. https://doi.org/10.29312/remexca.v15i6.3032.

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2