Identification of endophytic fungi of Ageratina pichinchensis with antagonistic activity against phytopathogens of agricultural importance

Authors

  • Valeria Camacho-Luna Department of Biotechnology-Center for the Development of Biotic Products-National Polytechnic Institute. CEPROBI street num. 8, Colonia San Isidro, Yautepec, Morelos, Mexico. ZC. 62731. https://orcid.org/0000-0002-9471-0163
  • Aida Rodríguez-Hernández CONACYT-National Polytechnic Institute- Center for the Development of Biotic Products. CEPROBI street num. 8, Colonia San Isidro, Yautepec, Morelos, Mexico. ZC. 62731. https://orcid.org/0000-0001-9179-1888
  • Mario Rodríguez-Monroy Department of Biotechnology-Center for the Development of Biotic Products-National Polytechnic Institute. CEPROBI street num. 8, Colonia San Isidro, Yautepec, Morelos, Mexico. ZC. 62731. https://orcid.org/0000-0001-6201-7594
  • Norma Robledo CONACYT-National Polytechnic Institute-Center for the Development of Biotic Products. CEPROBI street num. 8, Colonia San Isidro, Yautepec, Morelos, Mexico. ZC. 62731. https://orcid.org/0000-0002-8988-9875
  • Gabriela Sepúlveda-Jiménez Department of Biotechnology-Center for the Development of Biotic Products-National Polytechnic Institute. CEPROBI street num. 8, Colonia San Isidro, Yautepec, Morelos, Mexico. ZC. 62731.

DOI:

https://doi.org/10.29312/remexca.v13i6.3030

Keywords:

Fusarium, Nigrospora, Remotididymella, Trichoderma, biocontrol

Abstract

Ageratina pichinchensis is a medicinal plant, endemic to Mexico, known as Axihuitl. The extracts of the leaves show antifungal activity against dermatophytic fungi, but there are no studies of the identification of endophytic fungi. The objective was to identify endophytic fungi of A. pichinchensis with potential as biological control agents of phytopathogens. Fifty-five morphospecies of endophytic fungi that belong to the phylum Ascomycota were isolated from the leaves of A. pichinchensis. Molecular identification based on the analysis of the sequences of internal transcribed spacers (ITSs) amplified by PCR showed that six of the most frequent fungi correspond to Remotididymella anthropophila and Diaporthe caatingaensis and to the genera Diaporthe, Phomopsis and Fusarium. In multiple antagonism assays, seven morphospecies showed strong antagonistic activity against the pathogens Fusarium oxysporum, F. proliferatum and Stemphylium vesicarium. Two endophytic fungi belong to Alternaria alternata, another to Trichoderma longibrachiatum and two others are from the genera Alternaria and Phomopsis. While Nigrospora oryzae was the only most frequent endophyte and with antagonistic activity against the three pathogens. In dual culture assays, endophytes with strong antagonistic activity inhibited the mycelial growth of F. oxysporum and F. proliferatum by 37 to 80%, but in the poisoned food assay, T. longibrachiatum inhibited the mycelial growth of the two pathogens by 79% and 66%, respectively. For the first time, R. anthropophila as an endophytic fungus, as well as the identification and antagonistic activity of endophytic fungi of A. pichinchensis, are reported.

Downloads

Download data is not yet available.

References

Abdelrahman, M.; Abdel-Motaal, F.; El-Sayed, M.; Jogaiah, S.; Shigyo, M.; Ito, S. and Tran, L. P. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Sci. 246:128-138. https://doi.org/10.1016/j.plantsci.2016.02.008.

Al-Rashdi, F. K. H.; Al-Sadi, A. M.; Al-Riyamy, B. Z.; Maharachchikumbura, S. S. N.; Al-Sabahi, J. N. and Velazhahan, R. 2020. Endophytic fungi from the medicinal plant Aloe dhufarensis Lavranos exhibit antagonistic potential against phytopathogenic fungi. S. Afr. J. Bot. 147:1078-1085. https://doi.org/10.1016/j.sajb.2020.05.022.

Arnold, A. E.; Maynard, Z. and Gilbert, G. S. 2001. Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res. 105(12):1502-1507. https://doi.org/10.1017/S0953756201004956.

Aviles, M. and Suárez, G. 1994. Catálogo de plantas medicinales. Jardín Etnobotánico, Centro INAH. Cuernavaca, Morelos, México. 47 p.

Bertrand, S.; Schumpp, O.; Bohni, N.; Bujard, A.; Azzollini, A.; Monod, M.; Gindro, K. and Wolfender, J. L. 2013. Detection of metabolite induction in fungal co-cultures on solid media by high-throughput differential ultra-high pressure liquid chromatography-time-of-flight mass spectrometry fingerprinting. J. Chromatogr. A. 1292:219-228. https://doi.org/ 10.1016/j.chroma.2013.01.098.

Chowdhary, K. and Kaushik, N. 2015. Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS One. 10(11):1-25. https://doi.org/10.1371/ journal.pone.0141444.

Christian, N.; Sullivan, C.; Visser, N. D. and Clay, K. 2016. Plant host and geographic location drive endophyte community composition in the face of perturbation. Microb Ecol. 72(3):621-632. https://doi.org/10.1007/s00248-016-0804-y.

Du, F. Y.; Ju, G. L.; Xiao, L.; Zhou, Y. M. and Wu, X. 2020. Sesquiterpenes and cyclodepsipeptides from marine-derived fungus Trichoderma longibrachiatum and their antagonistic activities against soil-borne pathogens. Mar Drugs. 18(3):4-13. https://doi.org/10.3390/ md18030165. Egamberdieva, D.; Wirth, S.; Behrendt, U.; Ahmad, P. and Berg, G. 2017. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Microbiol. 8(148):1-11. https://doi.org/10.3389/fmicb.2017.00199.

Fröhlich, J. and Hyde, K. D. 1999. Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv. 8(3):977-1004. https://doi.org/10.1023/ A:1008895913857.

Foster, J. M.; Tayviah, C. S.; Stricker, S. M.; Gossen, B. D. and McDonald, M. R. 2019. Susceptibility to Stemphylium vesicarium of asparagus, onion, pear, and rye in Canada. Can. J. Plant Pathol. 41(2):228-241. https://doi.org/10.1080/07060661.2019.1574901.

Graf, S.; Bohlen, J. H.; Miessner, S.; Wichura, A. and Stammler, G. 2016. Differentiation of Stemphylium vesicarium from Stemphylium botryosum as causal agent of the purple spot disease on asparagus in Germany. Eur. J. Plant Pathol. 144:411-418. https://doi.org/ 10.1007/s10658-015-0777-6.

Hardoim, P. R.; Van Overbeek, L. S.; Berg, G.; Pirttilä, A. M.; Company, S.; Campisano, A.; Döring, M. and Sessitsch, A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79(3):293-320. https://doi.org/10.1128/MMBR.00050-14.

Hiremani, N. S.; Verma, P.; Gawande, S. P.; Sain, S. K.; Nagrale, D. T.; Salunkhe, V. N.; Shah, V.; Narkhedkar, N. G. and Waghmare, V. N. 2020. Antagonistic potential and phylogeny of culturable endophytic fungi isolated from desi cotton (Gossypium arboreum L.). S. Afr. J. Bot. 134:329-335. https://doi.org/10.1016/j.sajb.2020.03.008.

Kumar, S.; Kaushik, N.; Edrada, E. R.; Ebel, R. and Proksch, P. 2010. Isolation, characterization, and bioactivity of endophytic fungi of Tylophora indica. World J. Microbiol. Biotechnol. 27:571-577. https://doi.org/10.1007/s11274-010-0492-6. Lutfia, A.; Munir, E. and Yurnaliza, Y. 2020. Molecular identification of endophytic fungi from torch ginger (Etlingera elator) antagonist to phytopathogenic fungi. Biodiversitas. 21(6):2681-2689. https://doi.org/10.13057/biodiv/d210641.

Mei, L.; Zhu, M.; Zhang, D. Z.; Wang, Y. Z.; Guo, J. and Zhang, H. B. 2014. Geographical and temporal changes of foliar fungal endophytes associated with the invasive plant Ageratina adenophora. Microb. Ecol. 67(2):402-409. https://doi.org/10.1007/s00248-013-0319-8.

Mondani, L.; Chiausa, G. and Battilani, P. 2021. Chemical and biological control of Fusarium species involved in garlic dry rot at early crop stages. Eur. J. Plant Pathol. 160:575-587. https://doi.org/10.1007/s10658-021-02265-0.

Munkvold, G. P. 2017. Fusarium species and their associated mycotoxins. In: Moretti, A. and Susca, A. (Eds.). Mycotoxigenic fungi. Methods in molecular biology. New York: Humana Press. 51-106 pp. https://doi.org/10.1007/978-1-4939-6707-0-4.

Munkvold, G. P. 2003. Mycotoxins in corn-occurrence, impact, and management. In: White, P. J. and Johnson, L. A. (Eds.). Corn: chemistry and technology. St. Paul: American Association of Cereal. 811-881 pp.

Murali, T. S.; Suryanarayanan, T. S. and Geeta, R. 2006. Endophytic Phomopsis species: host range and implications for diversity estimates. Can. J. Microbiol. 52(7):673-680. Doi: https://doi.org/10.1139/W06-020.

Photita, W.; Lumyong, S.; Lumyong, P. and Hyde, K. D. 2001. Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, Thailand. Mycol. Res. 105(12):1508-1513. https://doi.org/10.1017/S0953756201004968.

Rao, N. R. and Pavgi, M. S. 1975. Stemphylium leaf blight of onion. Mycopathologia. 56:113-118. Ríos, M. Y.; Aguilar, G. B. A. and Navarro, V. 2003. Two new benzofuranes from Eupatorium aschembornianum and their antimicrobial activity. Planta Med. 69(10):967-970. https://doi.org/10.1055/s-2003-45113. Rzedowski, G. C. and Rzedowsky, J. 1985. Flora fanerógamica del Valle de México. Centro Regional del Bajío. Second ed. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Pátzcuaro, Michoacán. Instituto de Ecología, AC. 450-465 pp.

Sánchez, F. R. E.; Díaz, D.; Duarte, G.; Lappe, O. P.; Sánchez, S. and Macías, R. M. L. 2015. Antifungal volatile organic compounds from the endophyte Nodulisporium sp. Strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microb. Ecol. 71(2):347-364. https://doi.org/10.1007/s00248-015-0679-3.

Sarsaiya, S.; Jain, A.; Jia, Q.; Fan, X.; Shu, F.; Chen, Z.; Zhou, Q.; Shi, J. and Chen, J. 2020. Molecular identification of endophytic fungi and their pathogenicity evaluation against Dendrobium nobile and Dendrobium officinale. Int J Mol Sci. 21(1):1-16. https://doi.org/10.3390/ijms21010316.

Schmitz, H. X.1930. Poisoned food technique. Industrial and engineering chemistry. Analyst. 2:361-363.

Sheikh, F.; Dehghani, H. and Aghajani, M. A. 2015. Screening faba bean (Vicia faba L.) genotypes for resistance to Stemphylium blight in Iran. Eur. J. Plant Pathol. 143:677-689. https://doi.org/10.1007/s10658-015-0718-4.

Sundaramoorthy, S. and Balabaskar, P. 2013. Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J. Appl. Biol. Biotechnol. 1(3):36-40. https://doi.org/10.7324/JABB.2013.1306.

Wang, M. X.; Liu, F. X.; Crous, P. W. and Cai, L. X. 2017. Phylogenetic reassessment of Nigrospora: ubiquitous endophytes, plant and human pathogens. Persoonia-Mol Phylogeny Evol. Fungi. 39:118-142. https://doi.org/10.3767/persoonia.2017.39.06 White, T. J.; Bruns, T.; Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A.; Gelfand, D. H.; Sninsky, J. J. and White, T. J. (Eds.). PCR protocols, a guide to methods and applications. San Diego. Academic Press, Inc. 315-322 pp.

Yuen, T. K. and Hyde, K. D. and Hodgkiss, I. J. 1999. Interspecific interactions among tropical and subtropical freshwater fungi. Microb Ecol. 37(4):257-262. https://doi.org/10.1007/ s002489900151. Zapata-Sarmiento, D. H.; Palacios-Pala, E. F.; Rodríguez-Hernández, A. A.; Medina-Melchor, D. L.; Rodríguez-Monroy, M. and Sepúlveda-Jiménez, G. 2020. Trichoderma asperellum, a potential biological control agent of Stemphylium vesicarium, on onion (Allium cepa L.). Biol. Control. 140:104105. https://doi.org/10.1016/j.biocontrol.2019.104105.

Zhang, S. X.; Xu, B. X.; Zhang, J. X. and Gan, Y. X. 2018. Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathogens. Pestic Biochem Physiol. 47:59-66. https://doi.org/10.1016/j.pestbp. 2018.02.006.

Published

2022-10-24

How to Cite

Camacho-Luna, Valeria, Aida Araceli Rodríguez-Hernández, Mario Rodríguez-Monroy, Norma Robledo, and Gabriela Sepúlveda-Jiménez. 2022. “Identification of Endophytic Fungi of Ageratina Pichinchensis With Antagonistic Activity Against Phytopathogens of Agricultural Importance”. Revista Mexicana De Ciencias Agrícolas 13 (6). México, ME:1027-40. https://doi.org/10.29312/remexca.v13i6.3030.

Issue

Section

Articles

Most read articles by the same author(s)