Incorporation of bioactive compounds in fruit and vegetable products through osmotic dehydration: a review

Authors

  • Karina Huerta-Vera Campus Montecillo-Colegio de Postgraduados. Texcoco, Estado de México, México. CP. 56230
  • Enrique Flores-Andrade Universidad Veracruzana. Veracruz, México. CP. 94340
  • Adriana Contreras-Oliva Campus Córdoba-Colegio de Postgraduados. Veracruz, México. CP. 94946
  • Ángel Villegas-Monter Campus Montecillo-Colegio de Postgraduados. Texcoco, Estado de México, México. CP. 56230
  • Sergio Chavez-Franco Campus Montecillo-Colegio de Postgraduados. Texcoco, Estado de México, México. CP. 56230
  • Ma. de Lourdes Arévalo-Galarza Campus Montecillo-Colegio de Postgraduados. Texcoco, Estado de México, México. CP. 56230

DOI:

https://doi.org/10.29312/remexca.v14i8.2936

Keywords:

dehydrated foods, food stability, functional foods, impregnation

Abstract

The consumer is increasingly interested in their state of health and well-being, so the demand for functional foods has increased. The impregnation of bioactive compounds in fruit and vegetable products is a recent technology that opens a door of opportunity to a more demanding market, so a bibliographic review of the latest studies provides an overview for future work on the subject. The impregnation of bioactive compounds in the porous fraction of fruits and vegetables is achieved by osmotic dehydration (OD). In this sense, knowing the OD factors that determine the impregnation of bioactive compounds in plant tissues, their physicochemical stability during storage, and the latest trends in osmo-dehydrated fruit and vegetable products that could be considered functional foods is very important. Therefore, this review considered scientific information from different databases and was organized into three sections that are discussed: fundamentals of the OD, fruit and vegetable products enriched with bioactive compounds, and the physicochemical stability of these products during storage.

Downloads

Download data is not yet available.

References

Aguirre-García, M.; Hernández-Carranza, P.; Cortés-Zavaleta, O.; Ruíz-Espinoza, H.; Ochoa-Velasco, C. E. and Ruíz-López, I. I. 2020. Mass transfer analysis of bioactive compounds in apple wedges impregnated with beetroot juice: a 3D modelling approach. J. Food Eng. 282:1-10. Doi: 10.1016/j.jfoodeng.2020.110003.

Ahmed, I.; Qazi, I. M. and Jamal, S. 2016. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Sci. Emerging Technol. 34:29-43. Doi:10.1016/j.ifset.2016.01.003.

Akharume, F.; Singh, K.; Jaczynski, J. and Sivanandan, L. 2018. Microbial shelf stability assessment of osmotically dehydrated smoky apples. LWT-food science and technology. 90:61-69. Doi: 10.1016/j.lwt.2017.12.012.

Al-Tayyar, N. A.; Youssef, A. M. and Al-Hindi, R. R. 2020. Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: a review. Sustainable Materials Technol. 26:1-11. Doi: 10.1016/j.susmat.2020.e00215.

Barragán-Iglesias, J.; Rodríguez-Ramírez, J.; Sablani, S. S. and Méndez-Lagunas, L. L. 2018. Texture analysis of dried papaya (Carica papaya L., cv. Maradol) pretreated with calcium and osmotic dehydration. J. Drying Technol. 37(7):906-919. Doi: 10.1080/07373937.2018.1473420.

Batista-Medeiros, R. A.; Da-Silva, J. E. V.; Fernandes-Silva, J. H.; Da-Cunha, F. N. O.; Rupert-Brandāo, S. C.; Pimenta-Barros, Z. M.; Sá-Rocha, O. R. and Moreira-Azoubel, P. 2019. Effect of different grape residues polyphenols impregnation techniques in mango. J. Food Eng. 262:1-8.

Burca-Busaga, C. G.; Betoret, N.; Seguí, L.; Betoret, E. and Barrera, C. 2020. Survival of Lactobacillus salivarius CECT 4063 and stability of antioxidant compounds in dried apple snacks as affected by the water activity, the addition of trehalose and high-pressure homogenization. Microorganisms. 8(8):1-15. Doi: 10.3390/microorga nisms8081095.

Cichowska, J. and Kowalska, H. 2018. Effect of osmotic pre-treatment and temperature storage conditions on water activity and colour of dried apple. Inter. J. Food Eng. 14(2):1-11. Doi: 10.1515/ijfe-2017-0158.

Duarte-Correa, Y.; Díaz-Osorio, A.; Osorio-Arias, J.; Sobral, P. J. A. and Vega-Castro, O. 2020. Development of fortified low-fat potato chips through vacuum impregnation and microwave vacuum drying. Innovative food science and emerging technologies. 64:1-11. Doi: 10.1016/j.ifset.2020.102437.

Emser, K.; Barbosa, J.; Teixeira, P. and Bernardo-Morais, A. M. M. 2017. Lactobacillus plantarum survival during the osmotic dehydration and storage of probiotic cut apple. J. Functional Foods. 38(A):519-528. Doi: 10.1016/j.jff.2017.09.021.

Ferreira-Santos, S.; Vieira-Cardoso, R. C.; Pereira-Borges, I. M.; Costel-Almeida, A.; Sodré-Andrade, E.; Ormonde-Ferreira, I. and Carmo-Ramos, L. 2020. Post-harvest losses of fruits and vegetables in supply centers in Salvador, Brazil: analysis of determinants, volumes, and reduction strategies. Waste Management. 101:161-170. Doi: 10.1016/j.wasman.2019.10.007.

Fuentes-Berrio, L.; Acevedo-Correa, D. y Gelvez-Ordoñez, V. M. 2015. Alimentos funcionales: Impacto y retos para el desarrollo y bienestar de la sociedad colombiana. Biotecnología en el sector agropecuario y agroindustrial. 13(2):140-149. Doi:10.18684/BSAA(13)140-149.

George, J. M.; Selvan, T. S. and Rastogi, N. K. 2016. High-pressure-assisted infusion of bioactive compounds in apple slices. Innovative food science and emerging technologies. 33:100-107. Doi: 10.1016/j.ifset.2015.11.010.

Giannakourou, M.; Strati, I. F.; Kriebardis, A. G.; Mantanika, V.; Poulis, S.; Zoumpoulakis, P. and Sinanoglou, V. J. 2019. Shelf-life extension and quality improvement of cucumber slices impregnated in infusions of edible herbs. J. Analytical Letters. 52(17):2677-2691. Doi: 10.1080/00032719.2019.1589476.

González-Pérez, J. E.; López-Méndez, E. M.; Luna-Guevara, J. J.; Ruíz-Espinosa, H., Ochoa-Velasco, C. E. and Ruíz-López, I. I. 2019. Analysis of mass transfer and morphometric characteristics of white mushroom (Agaricus bisporus) pilei during osmotic dehydration. J. Food Eng. 240:120-132. Doi: 10.1016/j.jfoodeng.2018. 07.026.

Huerta-Vera, K. 2021. Chayote osmodeshidratado y enriquecido con oleorresina de pimienta negra, tesis de doctorado, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México. 2-25 pp.

Huerta-Vera, K.; Flores-Andrade, E.; Pérez-Sato, J. A.; Morales-Ramos, V.; Pascual-Pineda, L. A. and Contreras-Oliva, A. 2017. Enrichment of banana with Lactobacillus rhamnosus using double emulsion and osmotic dehydration. Food Bio. Technol. 10:1053-1062. Doi: 10.1007/s11947-017-1879-2.

Jiménez-Hernández, J.; Estrada-Bahena, E. B.; Maldonado-Astudillo, Y. I.; Talavera-Mendoza, O.; Arámbula-Villa, G. and Azuara, E. 2017. Osmotic dehydration of mango with impregnation of inulin and piquin-pepper oleoresin. LWT-food science and technology. 79:609-615. Doi: 10.1016/j.lwt.2016.11.016.

Lech, K.; Michalska, A.; Wojdyło, A.; Nowicka, P. and Figiel, A. 2018. The influence of physical properties of selected plant materials on the process of osmotic dehydration. LWT-food science and technology. 91:588-594. Doi: 10.1016/j.lwt.2018.02.012.

Lovera, N. N.; Ramallo, L. and Salvadori, V. O. 2018. Effects of different freezing methods on calcium enriched papaya (Carica papaya L.). J. Food Sci. Technol. 55(6):2039-2047. Doi: 10.1007/s13197-018-3118-x.

Maleki, M.; Shahidi, F.; Varidi, M. J. and Azarpazhooh, E. 2020. Hot air-drying kinetics of novel functional carrot snack: Impregnated using polyphenolic rich osmotic solution with ultrasound pretreatment. J. Food Process Eng. 43(2):1-11. Doi: 10.1111/jfpe.13331.

Mateus-Lima, M.; Tribuzi, G.; Ribeiro-Souza, J. A.; Gonςalves-Souza, J. A.; Borges-Laurindo, J. and Mattar-Carciofi, B. A. 2016. Vacuum impregnation and drying of calcium-fortified pineapple snacks. LWT-food science and technology. 72:501-509. Doi: org/10.1016/j.lwt.2016.05.016.

Mauro, M. A.; Dellarosa, N.; Tylewicz, U.; Tappi, S.; Laghi, L.; Rocculli, P. and Dalla, R. M. 2016. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions. Food Chem. 195:19-28. Doi: 10.1016/j.foodchem.2015.04.096.

Qiu, L.; Zhang, M.; Tang, J.; Ahikari, B. and Cao, P. 2019. Innovative technologies for producing and preserving intermediate moisture foods: a review. Food Res. Inter. 116:90-102. Doi: 10.1016/j.foodres.2018.12.055.

Rascón, M. P.; Huerta-Vera, K.; Pascual-Pineda, L. A.; Contreras-Oliva, A.; Flores-Andrade, E.; Castillo-Morales, M.; Bonilla, E. and González-Morales, I. 2018. Osmotic dehydration assisted impregnation of Lactobacillus rhamnosus in banana and effect of water activity on the storage stability of probiotic in the freeze-dried product. LWT-food science and technology. 92:490-496. Doi: 10.1016/j.lwt.2018. 02.074.

Seguí, L.; Fito, P. J. and Fito, P. 2012. Understanding osmotic dehydration of tissue structured foods by means of a cellular approach. J. Food Eng. 110(2):240-247. Doi: 10.1016/j.jfoodeng.2011.05.012.

Shukla, A.; Shukla, R. S.; Das, C. and Goud, V. V. 2019. Gingerols infusion and multi-step process optimization for enhancement of color, sensory and functional profiles of candied mango. Food Chem. 300:1-10. Doi: 10.1016/j.foodchem.2019.125195.

Sulistyawati, I.; Dekker, M.; Fogliano, V. and Verkerk, R. 2018. Osmotic dehydration of mango: effect of vacuum impregnation, high pressure, pectin methylesterase and ripeness on quality. LWT-food science and technology. 98:179-186. Doi: 10.1016/j.lwt.2018.08.032.

Tylewicz, U.; Mannozzi, C.; Romani, S.; Castagnini, J. M.; Samborska, K.; Rocculi, P. and Dalla, R. M. 2019. Chemical and physicochemical properties of semi-dried organic strawberries enriched with bilberry juice-based solution. LWT-food science and technology. 114:108377. Doi: 10.1016/j.lwt.2019.108377.

Winisdorffer, G.; Musse, M.; Quellec, S.; Barbacci, A.; Le-Gall, S.; Mariette, F. and Lahaye, M. 2015. Analysis of the dynamic mechanical properties of apple tissue and relationships with the intracellular water status, gas distribution, histological properties, and chemical composition analysis of the dynamic mechanical properties of apple tissue and relationships with the intracellular water status, gas distribution, histological properties and chemical composition. Postharvest Biol. Technol. 104:1-16. Doi: 10.1016/j.postharvbio.2015.02.010.

Xiao, M.; Bi, J.; Yi, J.; Zhao, Y.; Peng, J.; Zhou, L. and Chen, Q. 2018. Osmotic pretreatment for instant controlled pressure drops dried apple chips: Impact of the type of saccharides and treatment conditions. Drying Technology. 37(7):1-10. Doi: 10.1080/07373937.2018.1473419.

Published

2024-01-12

How to Cite

Huerta-Vera, Karina, Enrique Flores-Andrade, Adriana Contreras-Oliva, Ángel Villegas-Monter, Sergio Chavez-Franco, and Ma. de Lourdes Arévalo-Galarza. 2024. “Incorporation of Bioactive Compounds in Fruit and Vegetable Products through Osmotic Dehydration: A Review”. Revista Mexicana De Ciencias Agrícolas 14 (8). México, ME:e2936. https://doi.org/10.29312/remexca.v14i8.2936.

Issue

Section

Articles

Most read articles by the same author(s)