Impact of organic fertilizers associated with mycorrhizae on yield and nutraceutical quality of cucumber

Authors

  • Mayda Luz López-Morales National Technological Institute of Mexico-Torreón Campus. Torreón-San Pedro highway km 7.5, Ejido Ana, Torreon, Coahuila, Mexico
  • Lucio Leos -Escobedo Autonomous Agrarian University Antonio Narro-Laguna Unit. Peripheric Raúl López Sánchez km 1.5 and highway to Santa Fe (s/n), Torreón, Coahuila, Mexico.
  • Leticia Alfaro-Hernández National Technological Institute of Mexico-Torreón Campus. Torreón-San Pedro highway km 7.5, Ejido Ana, Torreon, Coahuila, Mexico
  • Amelio Eli Morales-Morales National Technological Institute of Mexico-Campus Conkal. Technological Avenue s/n, Conkal, Yucatan, Mexico

DOI:

https://doi.org/10.29312/remexca.v13i5.2868

Keywords:

antioxidants, organic fertilization, substrates

Abstract

The use of organic fertilizers together with arbuscular mycorrhizal fungi (AMF) are an alternative for the recovery of soils and optimizing the quality of foods because they help improve the absorption of nutrients that leads to obtaining foods free of agrochemicals. Therefore, the objective of the study was to evaluate the effect of organic fertilizers and AMF on the dynamics of cucumber production and quality. The study was conducted at UAAAN-UL, Torreón, Coahuila, during 2019. Six treatments were generated: AEBE= sand + bovine manure + Ecomic; AECE= sand + goat manure + Ecomic; AEEE= sand + equine manure + Ecomic; SEEE= soil + equine manure + Ecomic; ACE= sand + compost + Ecomic; and ASNS= sand + Steiner nutrient solution. The treatments were established in a completely randomized design with six repetitions. The following variables were evaluated: plant height, stem diameter, length, width and weight of fruit, yield, firmness, soluble solids, phenolic compounds, flavonoids and antioxidants. The data obtained were subjected to an analysis of variance and Tukey tests (p≤ 0.05). The results showed significant differences in all the variables analyzed and the AEBE treatment stood out in plant height, weight and fruit diameter, while all treatments with organic fertilization obtained better response in nutraceutical quality, compared to the control.

Downloads

Download data is not yet available.

References

Agati, G.; Brunetti, C.; Fini, A.; Gori, A.; Guidi, L.; Landi, M.; Sebastiani, F and Tattini, M. 2020. Are flavonoids effective antioxidants in plants? twenty years of our investigation. Antioxidants. 9(11):1098.

Aguiñaga-Bravo, A.; Medina-Dzul, K.; Garruña-Hernández, R.; Latournerie-Moreno, L. y Ruíz-Sánchez, E. 2020. Efecto de abonos orgánicos sobre el rendimiento, valor nutritivo y capacidad antioxidante de tomate verde (Physalis ixocarpa). Acta Universitaria. 30:e2475.Doi: 10.15174.au.2020.2475.

Aldrich, H. T.; Salandanan, K.; Kendall, P.; Bunning, M.; Stonaker, F.; Külen, O. and Stushnoff, C. 2010. Cultivar choice provides options for local production of organic and conventionally produced tomatoes with higher quality and antioxidant content. J. Sci. Food Agric. 90(15):2548-2555. DOI: https://doi.org/10.1002/jsfa.4116

Alvarado-Carrillo, M.; Díaz-Franco, A. y Alejandro-Allende, F. 2018. Gallinaza, micorriza arbuscular y fertilización química reducida en la productividad de calabacita y pepino. Revista Inter. Cont. Amb. 34(2):273-279. DOI: https://doi.org/10.20937/RICA.2018.34.02.08

Alvarado-Carrillo, M.; Díaz-Franco, A. y Peña-Río, M. 2014. Tomato productivity by arbuscular: mycorrhizal in protected agriculture. Rev. Mex. Cienc. Agríc. 5(3):513-518. DOI: https://doi.org/10.29312/remexca.v5i3.954

Ayuso-Calles, M.; Flores-Félix, J. D. and Rivas, R. 2021. Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy. 11(9):1759.

Barros, L.; Heleno, S. A.; Carvalho, A. M. and Ferreira, I. C. 2010. Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: vitamins and phenolics. LWT-Food Sci. Technol. 43(3):544-550. DOI: https://doi.org/10.1016/j.lwt.2009.09.024

Brand-Williams, W.; Cuvelier, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1):25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Canchani, A.; Espaillat, R. y López, J. 2018. El efecto y la aportación de la micorriza en el desarrollo de cultivos agrícolas. Perspectivas en Asuntos Ambientales. 6:34-42.

Cavagnaro, T. R. 2014. Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biol. Biochem. 78:38-44. DOI: https://doi.org/10.1016/j.soilbio.2014.07.007

Chew, K. W.; Chia, S. R.; Yen, H. W.; Nomanbhay, S.; Ho, Y. C. and Show, P. L. 2019. Transformation of biomass waste into sustainable organic fertilizers. Sustainability. 11(8):2266.

Comby, M.; Mustafa, G.; Magnin-Robert, M.; Randoux, B.; Fontaine, J.; Reignault, P. and Lounès-Hadj Sahraoui, A. 2017. Arbuscular mycorrhizal fungi as potential bioprotectants against aerial phytopathogens and pests. In: Q.-S. Wu (Ed.). Arbuscular mycorrhizas and stress tolerance of plants. Singapore: springer Singapore. 195-223 pp. DOI: https://doi.org/10.1007/978-981-10-4115-0_9

Cos, J. I. D.; Nelson, M. C. R.; Turro, A. F.; Esmilda, J. y Ruiz, G. 2013. Respuesta del tomate al uso de alternativas orgánicas y micorriza en producción protegido en Guantánamo. Centro Agrícola. 40(3):15-21.

De Oliveira, P. T. F.; Dos Santos, E. L.; Da Silva, W. A. V.; Ferreira, M. R. A.; Soares, L. A. L.; Da Silva, F. A. and Da Silva, F. S. B. 2020. Use of mycorrhizal fungi releases the application of organic fertilizers to increase the production of leaf vitexin in yellow passion fruit. J. Sci. Food Agric. 100:1816-1821.

Diagne, N.; Ngom, M.; Djighaly, P. I.; Fall, D., Hocher, V. and Svistoonoff, S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity. 12(10):370. Doi: 10.3390/d12100370.

Díaz-Franco, A.; Alvarado-Carrillo, M.; Alejandro-Allende, F. y Ortiz-Chairez, F. E. 2017. Uso de abono orgánico y micorriza arbuscular en la producción de repollo. Rev. Chapingo Ser. Zonas Áridas. 16(1):15-21. DOI: https://doi.org/10.5154/r.rchsza.2017.02.003

Fortis-Hernández, M.; Leos-Rodríguez, J. A.; Preciado-Rangel, P.; Orona-Castillo, I.; García-Salazar, J. A.; García-Hernández, J. L. y Orozco-Vidal, J. A. 2009. Aplicación de abonos orgánicos en la producción de maíz forrajero con riego por goteo. Terra Latinoam. 27(4):329-336.

Galindo-Pardo, F. V.; Fortis-Hernández, M.; Preciado-Rangel, P.; Trejo-Valencia, R.; Segura-Castruita, M. Á. y Orozco-Vidal, J. A. 2014. Caracterización físico-química de sustratos orgánicos para producción de pepino (Cucumis sativus L.) bajo sistema protegido. Rev. Mex. Cienc. Agríc. 5(7):1219-1232. DOI: https://doi.org/10.29312/remexca.v5i7.867

García, M. C.; Piqueras-Aljarilla, E.; Font, R.; Pascual-Asso, F.; Gómez, P. and del Río, M. 2017. Physico-chemical characterization of cherry tomatoes grown under organic agriculture. In: III International Symposium on Organic Greenhouse Horticulture. 1164:513-518. DOI: https://doi.org/10.17660/ActaHortic.2017.1164.67

González-Rodríguez, G.; Espinosa-Palomeque, B.; Cano-Ríos, P.; Moreno-Reséndez, A.; Leos-Escobedo, L.; Sánchez-Galván, H. y Sáenz Mata, J. 2018. Influencia de rizobacterias en la producción y calidad nutracéutica de tomate bajo condiciones de invernadero. Rev. Mex. Cienc. Agríc. 9(2):367-379. DOI: https://doi.org/10.29312/remexca.v9i2.1078

Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q. and Jiang, L. 2019. Organic manure coupled with inorganic fertilizer: An approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy. 9(10):651.

Jiménez-Ortiz, M. M.; Gómez-Álvarez, R.; Oliva-Hernández, J.; Granados-Zurita, L.; Pat-Fernández, J. M. y Aranda-Ibáñez, E. M. 2019. Influencia del estiércol composteado y micorriza arbuscular sobre la composición química del suelo y el rendimiento productivo de maíz forrajero (Zea mays L.). Nova Scientia. 11(23):00009. Doi: 10.21640/ns.v11i23.1957.

Krzyzaniak, Y.; Magnin-Robert, M.; Randoux, B.; Fontaine, J. and Sahraoui, A. L. H. 2021. combined use of beneficial bacteria and arbuscular mycorrhizal fungi for the biocontrol of plant cryptogamic diseases: evidence, methodology, and limits. In: Shrivastava N.; Mahajan S. and Varma A. (Ed.). symbiotic soil microorganisms. Soil Biology Springer Cham. 60:429-468.

Kwikiriza, K.; Mugisha, J.; Karantininis, K. and Kledal, P. R. 2018. Influence of transaction costs and governance in the marketing of organic pineapples from uganda. J. Sustain. Develop. 11(3):194-211. DOI: https://doi.org/10.5539/jsd.v11n3p194

Ma, L.; Zhang, J.; Ren, R.; Fan, B.; Hou, L. and Li, J. 2020. Effects of different organic nutrient solution formulations and supplementation on tomato fruit quality and aromatic volatiles. Arch. Agron. Soil Sci. 67(4):563-575

Morales-Morales, A. E.; Alvarado-López, C. J.; Andueza-Noh, R. H.; Tun-Suarez, J. M. y Medina, K. B. 2020. Calidad nutrimental y nutracéutica en ejotes de caupí (Vigna unguiculata [L.] walp.) de la Península de Yucatán. Ecosist. Rec. Agropec. 7(3):e2541. Doi: 10.19136/era.a7n3.2541.

Naeem, M.; Basit, A.; Ahmad, I.; Mohamed, H. I.; and Wasila, H. 2020. Effect of salicylic acid and salinity stress on the performance of tomato plants. Gesunde Pflanzen. 72(4):393-402.

Ortiz-Bobea, A.; Ault, T. R.; Carrillo, C. M.; Chamber, R. G. and Lobell, D. B. 2021. Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change. 11(4):306-312.

Parra-Rivero, S. M.; Maciel-De Sousa, N. M.; Sanabria-Chopite, M. y Pineda, J. 2018. Descripción anatómica de la colonización de hongos micorrízicos arbusculares en dos leguminosas arbóreas. Rev. Chapingo Ser. Cienc. Forest. Amb. 24(2):183-196. DOI: https://doi.org/10.5154/r.rchscfa.2017.02.014

Peñaloza-Monroy, J.; Reyes, R. A. K.; González, H. A.; Pérez, L. D. D. J. y Sangerman-Jarquín, D. M. 2019. Fertilización orgánica con tres niveles de gallinaza en cuatro cultivares de papa. Rev. Mex. Cienc. Agríc. 10(5):1139-1149.

Pérez, D. M.; García, P. A. V. y Pimentel, K. R. 2021. Efecto de las micorrizas arbusculares sobre la fase inicial de crecimiento de Zea mays L. Avances. 23(3):1-10. ID: 637869395004.

Petruk, G.; Del Giudice, R.; Rigano, M. M. and Monti, D. M. 2018. Antioxidants from plants protect against skin photoaging. Oxidative Medicine and Cellular Longevity. ID 1454936. https://doi.org/10.1155/2018/1454936.

Phillips, J. M. and Hayman, D. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 55(1):158-161. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3

Pieper, J. R. and Barrett, D. M. 2009. Effects of organic and conventional production systems on quality and nutritional parameters of processing tomatoes. J. Sci. Food Agric. 89(2):177-194. DOI: https://doi.org/10.1002/jsfa.3437

Rojas-Rodríguez, K. y Ortuño, N. 2007. Evaluación de micorrizas arbusculares en interacción con abonos orgánicos como coadyuvantes del crecimiento en la producción hortícola del valle alto de Cochabamba, Bolivia. Acta Nova. 3:697-719.

Rosas-Medina, I.; Colmenero-Robles, A.; Naranjo-Jiménez, N.; Ávila-Reyes, J. A. y Almaraz-Abarca, N. 2020. La salinidad incrementa el contenido de flavonoides, de antocianinas y el potencial hipoglucemiante de tomatillo (Physalis ixocarpa). E-CUCBA. 13:21-29.

Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Hussan, M. U. and Sarwar, M. I. 2019. A review: impact of salinity on plant growth. Nat. Sci. 17(1):34-40.

Santiago-López, G.; Preciado-Rangel, P.; Sánchez-Chávez, E.; Esparza-Rivera, J. R.; Fortis-Hernández, M. and Moreno-Reséndez, A. 2016. Organic nutrient solutions in production and antioxidant capacity of cucumber fruits. Emirates J. Food Agric. 28(7):518-521. DOI: https://doi.org/10.9755/ejfa.2016-01-083

SAS. 2009. What’s new in SAS R9.2. SAS Institute Inc. Cary, North Carolina, USA. 84 p.

SEMARNAT. 2014. Secretaría del Medio Ambiente y Recursos Naturales. Programa para mejorar la calidad del aire en la región de la Comarca Lagunera 2010-2015. https://www.gob.mx/ cms/uploads/attachment/file/69347/Anexo-1-I-Informe-ProAire-Comarca-Lagunera-E11.pdf.

Singleton, V. L.; Orthofer, R. and Lamuela-Raventós, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 299:152-178. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1

Tedersoo, L.; Bahram, M. and Zobel, M. 2020. How mycorrhizal associations drive plant population and community biology. Science. 367(6480):1223. Doi: 10.1126/science. aba1223.

Wang, C.; Tian, B.; Yu, Z. and Ding, J. 2020. Effect of different combinations of phosphorus and nitrogen fertilization on arbuscular mycorrhizal fungi and aphids in wheat. Insects. 11(6):365.

Xiao, Y.; Zhao, Z.; Chen, L. and Li, Y. 2020. Arbuscular mycorrhizal fungi and organic manure have synergistic effects on trifolium repens in Cd-contaminated sterilized soil but not in natural soil. Appl. Soil Ecol. 149:103485.

Published

2022-08-02

How to Cite

López-Morales, Mayda Luz, Lucio Leos-Escobedo, Leticia Alfaro-Hernández, and Amelio Eli Morales-Morales. 2022. “Impact of Organic Fertilizers Associated With Mycorrhizae on Yield and Nutraceutical Quality of Cucumber”. Revista Mexicana De Ciencias Agrícolas 13 (5). México, ME:785-98. https://doi.org/10.29312/remexca.v13i5.2868.

Issue

Section

Articles

Most read articles by the same author(s)