Impacto de abonos orgánicos asociados con micorrizas sobre rendimiento y calidad nutraceútica del pepino

Autores/as

  • Mayda Luz López-Morales Tecnológico Nacional de México-Campus Torreón. Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón, Coahuila, México
  • Lucio Leos -Escobedo Universidad Autónoma Agraria Antonio Narro-Unidad Laguna. Periférico Raúl López Sánchez km 1.5 y carretera a Santa Fe (s/n), Torreón, Coahuila, México
  • Leticia Alfaro-Hernández Tecnológico Nacional de México-Campus Torreón. Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón, Coahuila, México
  • Amelio Eli Morales-Morales Tecnológico Nacional de México-Campus Conkal. Av. Tecnológico s/n, Conkal, Yucatán, México

DOI:

https://doi.org/10.29312/remexca.v13i5.2868

Palabras clave:

antioxidantes, fertilización orgánica, sustratos

Resumen

El uso de abonos orgánicos junto con los hongos micorrízicos arbusculares (HMA), son una alternativa para la recuperación de los suelos y optimizar la calidad de los alimentos, debido a que ayudan a mejorar la absorción de nutrimentos que conlleva a la obtención de alimentos libres de agroquímicos. Por lo anterior, el objetivo del estudio fue evaluar el efecto de abonos orgánicos y HMA en la dinámica de la producción y calidad de pepino. El estudio se realizó en UAAAN-UL, Torreón, Coahuila, durante 2019. Se generaron seis tratamientos: AEBE = arena + estiércol bovino + Ecomic; AECE = arena + estiércol caprino + Ecomic; AEEE = arena + estiércol equino + Ecomic; SEEE = suelo + estiércol equino + Ecomic; ACE = arena + compost + Ecomic; y ASNS= arena + solución nutritiva Steiner. Los tratamientos se establecieron en un diseño completamente al azar con seis repeticiones. Se evaluaron las variables: altura de la planta, diámetro de tallo, longitud, ancho y peso de fruto, rendimiento, firmeza, solidos solubles, compuestos fenólicos, flavonoides y antioxidantes. Los datos obtenidos fueron sometidos a un análisis de varianza y pruebas de Tukey (p≤ 0.05). Los resultados mostraron diferencias significativas en todas las variables analizadas y el tratamiento AEBE resaltó en altura de planta, peso y diámetro de fruto, mientras que, todos los tratamientos con fertilización orgánica obtuvieron mejor respuesta en la calidad nutracéutica, comparada con el testigo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agati, G.; Brunetti, C.; Fini, A.; Gori, A.; Guidi, L.; Landi, M.; Sebastiani, F and Tattini, M. 2020. Are flavonoids effective antioxidants in plants? twenty years of our investigation. Antioxidants. 9(11):1098.

Aguiñaga-Bravo, A.; Medina-Dzul, K.; Garruña-Hernández, R.; Latournerie-Moreno, L. y Ruíz-Sánchez, E. 2020. Efecto de abonos orgánicos sobre el rendimiento, valor nutritivo y capacidad antioxidante de tomate verde (Physalis ixocarpa). Acta Universitaria. 30:e2475.Doi: 10.15174.au.2020.2475.

Aldrich, H. T.; Salandanan, K.; Kendall, P.; Bunning, M.; Stonaker, F.; Külen, O. and Stushnoff, C. 2010. Cultivar choice provides options for local production of organic and conventionally produced tomatoes with higher quality and antioxidant content. J. Sci. Food Agric. 90(15):2548-2555. DOI: https://doi.org/10.1002/jsfa.4116

Alvarado-Carrillo, M.; Díaz-Franco, A. y Alejandro-Allende, F. 2018. Gallinaza, micorriza arbuscular y fertilización química reducida en la productividad de calabacita y pepino. Revista Inter. Cont. Amb. 34(2):273-279. DOI: https://doi.org/10.20937/RICA.2018.34.02.08

Alvarado-Carrillo, M.; Díaz-Franco, A. y Peña-Río, M. 2014. Tomato productivity by arbuscular: mycorrhizal in protected agriculture. Rev. Mex. Cienc. Agríc. 5(3):513-518. DOI: https://doi.org/10.29312/remexca.v5i3.954

Ayuso-Calles, M.; Flores-Félix, J. D. and Rivas, R. 2021. Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy. 11(9):1759.

Barros, L.; Heleno, S. A.; Carvalho, A. M. and Ferreira, I. C. 2010. Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: vitamins and phenolics. LWT-Food Sci. Technol. 43(3):544-550. DOI: https://doi.org/10.1016/j.lwt.2009.09.024

Brand-Williams, W.; Cuvelier, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1):25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Canchani, A.; Espaillat, R. y López, J. 2018. El efecto y la aportación de la micorriza en el desarrollo de cultivos agrícolas. Perspectivas en Asuntos Ambientales. 6:34-42.

Cavagnaro, T. R. 2014. Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biol. Biochem. 78:38-44. DOI: https://doi.org/10.1016/j.soilbio.2014.07.007

Chew, K. W.; Chia, S. R.; Yen, H. W.; Nomanbhay, S.; Ho, Y. C. and Show, P. L. 2019. Transformation of biomass waste into sustainable organic fertilizers. Sustainability. 11(8):2266.

Comby, M.; Mustafa, G.; Magnin-Robert, M.; Randoux, B.; Fontaine, J.; Reignault, P. and Lounès-Hadj Sahraoui, A. 2017. Arbuscular mycorrhizal fungi as potential bioprotectants against aerial phytopathogens and pests. In: Q.-S. Wu (Ed.). Arbuscular mycorrhizas and stress tolerance of plants. Singapore: springer Singapore. 195-223 pp. DOI: https://doi.org/10.1007/978-981-10-4115-0_9

Cos, J. I. D.; Nelson, M. C. R.; Turro, A. F.; Esmilda, J. y Ruiz, G. 2013. Respuesta del tomate al uso de alternativas orgánicas y micorriza en producción protegido en Guantánamo. Centro Agrícola. 40(3):15-21.

De Oliveira, P. T. F.; Dos Santos, E. L.; Da Silva, W. A. V.; Ferreira, M. R. A.; Soares, L. A. L.; Da Silva, F. A. and Da Silva, F. S. B. 2020. Use of mycorrhizal fungi releases the application of organic fertilizers to increase the production of leaf vitexin in yellow passion fruit. J. Sci. Food Agric. 100:1816-1821.

Diagne, N.; Ngom, M.; Djighaly, P. I.; Fall, D., Hocher, V. and Svistoonoff, S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity. 12(10):370. Doi: 10.3390/d12100370.

Díaz-Franco, A.; Alvarado-Carrillo, M.; Alejandro-Allende, F. y Ortiz-Chairez, F. E. 2017. Uso de abono orgánico y micorriza arbuscular en la producción de repollo. Rev. Chapingo Ser. Zonas Áridas. 16(1):15-21. DOI: https://doi.org/10.5154/r.rchsza.2017.02.003

Fortis-Hernández, M.; Leos-Rodríguez, J. A.; Preciado-Rangel, P.; Orona-Castillo, I.; García-Salazar, J. A.; García-Hernández, J. L. y Orozco-Vidal, J. A. 2009. Aplicación de abonos orgánicos en la producción de maíz forrajero con riego por goteo. Terra Latinoam. 27(4):329-336.

Galindo-Pardo, F. V.; Fortis-Hernández, M.; Preciado-Rangel, P.; Trejo-Valencia, R.; Segura-Castruita, M. Á. y Orozco-Vidal, J. A. 2014. Caracterización físico-química de sustratos orgánicos para producción de pepino (Cucumis sativus L.) bajo sistema protegido. Rev. Mex. Cienc. Agríc. 5(7):1219-1232. DOI: https://doi.org/10.29312/remexca.v5i7.867

García, M. C.; Piqueras-Aljarilla, E.; Font, R.; Pascual-Asso, F.; Gómez, P. and del Río, M. 2017. Physico-chemical characterization of cherry tomatoes grown under organic agriculture. In: III International Symposium on Organic Greenhouse Horticulture. 1164:513-518. DOI: https://doi.org/10.17660/ActaHortic.2017.1164.67

González-Rodríguez, G.; Espinosa-Palomeque, B.; Cano-Ríos, P.; Moreno-Reséndez, A.; Leos-Escobedo, L.; Sánchez-Galván, H. y Sáenz Mata, J. 2018. Influencia de rizobacterias en la producción y calidad nutracéutica de tomate bajo condiciones de invernadero. Rev. Mex. Cienc. Agríc. 9(2):367-379. DOI: https://doi.org/10.29312/remexca.v9i2.1078

Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q. and Jiang, L. 2019. Organic manure coupled with inorganic fertilizer: An approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy. 9(10):651.

Jiménez-Ortiz, M. M.; Gómez-Álvarez, R.; Oliva-Hernández, J.; Granados-Zurita, L.; Pat-Fernández, J. M. y Aranda-Ibáñez, E. M. 2019. Influencia del estiércol composteado y micorriza arbuscular sobre la composición química del suelo y el rendimiento productivo de maíz forrajero (Zea mays L.). Nova Scientia. 11(23):00009. Doi: 10.21640/ns.v11i23.1957.

Krzyzaniak, Y.; Magnin-Robert, M.; Randoux, B.; Fontaine, J. and Sahraoui, A. L. H. 2021. combined use of beneficial bacteria and arbuscular mycorrhizal fungi for the biocontrol of plant cryptogamic diseases: evidence, methodology, and limits. In: Shrivastava N.; Mahajan S. and Varma A. (Ed.). symbiotic soil microorganisms. Soil Biology Springer Cham. 60:429-468.

Kwikiriza, K.; Mugisha, J.; Karantininis, K. and Kledal, P. R. 2018. Influence of transaction costs and governance in the marketing of organic pineapples from uganda. J. Sustain. Develop. 11(3):194-211. DOI: https://doi.org/10.5539/jsd.v11n3p194

Ma, L.; Zhang, J.; Ren, R.; Fan, B.; Hou, L. and Li, J. 2020. Effects of different organic nutrient solution formulations and supplementation on tomato fruit quality and aromatic volatiles. Arch. Agron. Soil Sci. 67(4):563-575

Morales-Morales, A. E.; Alvarado-López, C. J.; Andueza-Noh, R. H.; Tun-Suarez, J. M. y Medina, K. B. 2020. Calidad nutrimental y nutracéutica en ejotes de caupí (Vigna unguiculata [L.] walp.) de la Península de Yucatán. Ecosist. Rec. Agropec. 7(3):e2541. Doi: 10.19136/era.a7n3.2541.

Naeem, M.; Basit, A.; Ahmad, I.; Mohamed, H. I.; and Wasila, H. 2020. Effect of salicylic acid and salinity stress on the performance of tomato plants. Gesunde Pflanzen. 72(4):393-402.

Ortiz-Bobea, A.; Ault, T. R.; Carrillo, C. M.; Chamber, R. G. and Lobell, D. B. 2021. Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change. 11(4):306-312.

Parra-Rivero, S. M.; Maciel-De Sousa, N. M.; Sanabria-Chopite, M. y Pineda, J. 2018. Descripción anatómica de la colonización de hongos micorrízicos arbusculares en dos leguminosas arbóreas. Rev. Chapingo Ser. Cienc. Forest. Amb. 24(2):183-196. DOI: https://doi.org/10.5154/r.rchscfa.2017.02.014

Peñaloza-Monroy, J.; Reyes, R. A. K.; González, H. A.; Pérez, L. D. D. J. y Sangerman-Jarquín, D. M. 2019. Fertilización orgánica con tres niveles de gallinaza en cuatro cultivares de papa. Rev. Mex. Cienc. Agríc. 10(5):1139-1149.

Pérez, D. M.; García, P. A. V. y Pimentel, K. R. 2021. Efecto de las micorrizas arbusculares sobre la fase inicial de crecimiento de Zea mays L. Avances. 23(3):1-10. ID: 637869395004.

Petruk, G.; Del Giudice, R.; Rigano, M. M. and Monti, D. M. 2018. Antioxidants from plants protect against skin photoaging. Oxidative Medicine and Cellular Longevity. ID 1454936. https://doi.org/10.1155/2018/1454936.

Phillips, J. M. and Hayman, D. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 55(1):158-161. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3

Pieper, J. R. and Barrett, D. M. 2009. Effects of organic and conventional production systems on quality and nutritional parameters of processing tomatoes. J. Sci. Food Agric. 89(2):177-194. DOI: https://doi.org/10.1002/jsfa.3437

Rojas-Rodríguez, K. y Ortuño, N. 2007. Evaluación de micorrizas arbusculares en interacción con abonos orgánicos como coadyuvantes del crecimiento en la producción hortícola del valle alto de Cochabamba, Bolivia. Acta Nova. 3:697-719.

Rosas-Medina, I.; Colmenero-Robles, A.; Naranjo-Jiménez, N.; Ávila-Reyes, J. A. y Almaraz-Abarca, N. 2020. La salinidad incrementa el contenido de flavonoides, de antocianinas y el potencial hipoglucemiante de tomatillo (Physalis ixocarpa). E-CUCBA. 13:21-29.

Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Hussan, M. U. and Sarwar, M. I. 2019. A review: impact of salinity on plant growth. Nat. Sci. 17(1):34-40.

Santiago-López, G.; Preciado-Rangel, P.; Sánchez-Chávez, E.; Esparza-Rivera, J. R.; Fortis-Hernández, M. and Moreno-Reséndez, A. 2016. Organic nutrient solutions in production and antioxidant capacity of cucumber fruits. Emirates J. Food Agric. 28(7):518-521. DOI: https://doi.org/10.9755/ejfa.2016-01-083

SAS. 2009. What’s new in SAS R9.2. SAS Institute Inc. Cary, North Carolina, USA. 84 p.

SEMARNAT. 2014. Secretaría del Medio Ambiente y Recursos Naturales. Programa para mejorar la calidad del aire en la región de la Comarca Lagunera 2010-2015. https://www.gob.mx/ cms/uploads/attachment/file/69347/Anexo-1-I-Informe-ProAire-Comarca-Lagunera-E11.pdf.

Singleton, V. L.; Orthofer, R. and Lamuela-Raventós, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 299:152-178. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1

Tedersoo, L.; Bahram, M. and Zobel, M. 2020. How mycorrhizal associations drive plant population and community biology. Science. 367(6480):1223. Doi: 10.1126/science. aba1223.

Wang, C.; Tian, B.; Yu, Z. and Ding, J. 2020. Effect of different combinations of phosphorus and nitrogen fertilization on arbuscular mycorrhizal fungi and aphids in wheat. Insects. 11(6):365.

Xiao, Y.; Zhao, Z.; Chen, L. and Li, Y. 2020. Arbuscular mycorrhizal fungi and organic manure have synergistic effects on trifolium repens in Cd-contaminated sterilized soil but not in natural soil. Appl. Soil Ecol. 149:103485.

Publicado

2022-08-02

Cómo citar

López-Morales, Mayda Luz, Lucio Leos-Escobedo, Leticia Alfaro-Hernández, y Amelio Eli Morales-Morales. 2022. «Impacto De Abonos orgánicos Asociados Con Micorrizas Sobre Rendimiento Y Calidad Nutraceútica Del Pepino». Revista Mexicana De Ciencias Agrícolas 13 (5). México, ME:785-98. https://doi.org/10.29312/remexca.v13i5.2868.

Número

Sección

Artículos

Artículos más leídos del mismo autor/a