Induced variability in morphological characteristics of Euphorbia fulgens Karw. ex Klotzsch

Authors

  • Mónica Pérez Nicolás Department of Phytotechnics-Chapingo Autonomous University. Mexico-Texcoco highway km 38.5, Chapingo, State of Mexico. CP. 56230. Tel. 595 9521500 https://orcid.org/0000-0003-1245-9153
  • María Teresa Colinas y León Department of Phytotechnics-Chapingo Autonomous University. Mexico-Texcoco highway km 38.5, Chapingo, State of Mexico. CP. 56230. Tel. 595 9521500 https://orcid.org/0000-0003-2617-5928
  • Iran Alia Tejacal Faculty of Agricultural Sciences-Autonomous University of the State of Morelos. 1001 University Avenue, Cuernavaca, Morelos. CP. 62210. Tel. 777 1345402 https://orcid.org/0000-0002-2242-2293
  • Carlos Rodríguez Barbecho Department of Phytotechnics-Chapingo Autonomous University. Mexico-Texcoco highway km 38.5, Chapingo, State of Mexico. CP. 56230. Tel. 595 9521500
  • Margarita Gisela Peña Ortega Department of Phytotechnics-Chapingo Autonomous University. Mexico-Texcoco highway km 38.5, Chapingo, State of Mexico. CP. 56230. Tel. 595 9521500
  • Eulogio Cruz De La Cruz Torres Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, México. CP. 52750. Tel. 55 53297200

DOI:

https://doi.org/10.29312/remexca.v13i3.2845

Keywords:

color, gamma rays, induced mutagenesis, ornamental plant

Abstract

Euphorbia fulgens is an ornamental species that, in Mexico, has little variability in the color of flowers, so this work had as an objective to evaluate the effect of 60Co gamma radiation on seeds and morphological characteristics of adult plants, as well as to obtain mutants of different colors in the flowers. Seeds were collected in communities of Oaxaca (M0), irradiated at nine doses (50, 100, 150, 200, 250, 300, 450, 600, 750 Gy) and established under greenhouse until the adult stage (M1), giving follow-up until the development of their offspring (M2). Emergence, survival and 27 morphological characteristics corresponding to vegetative and reproductive structures in both generations were evaluated. The percentage of emergence and the number of plants that survived decreased as the radiation dose increased. Radiation doses of 250 Gy or higher caused seed germination percentages to be less than 50%. The treatments produced differences in the variables: number of branches with inflorescences and color of petaliferous appendages. The dose of 300 Gy generated branched individuals with different inflorescence color, although it affected survival. The phenotypic distribution in progenitors and descendants was similar, showing differences in number of cymes, number of cyathia and color of petaliferous appendages. Irradiation is a suitable technique to generate variation in the color of the inflorescences in this species.

Downloads

Download data is not yet available.

References

Ahloowalia, B. S. and Maluszynski, M. 2001. Induced mutations. A new paradigm in plant breeding. Euphytica. 118:167-173. DOI: https://doi.org/10.1023/A:1004162323428

Antúnez-Ocampo, O. M.; Cruz-Izquierdo, S.; Sandoval-Villa, M.; Santracruz-Valera, A.; Mendoza-Onofre, L. E.; Peña-Lomelí, A. y De la Cruz-Torres, E. 2020a. Peso y caracteres cuantitativos de la calidad en frutos de plantas M1 de Physalis peruviana L. provenientes de semillas irradiadas con 60Co. Agrociencia. 54(5):691-703.

Antúnez-Ocampo, O. M.; Cruz-Izquierdo, S.; Sandoval-Villa, M.; Santracruz-Valera, A.; Mendoza-Onofre, L. E.; Peña-Lomelí, A. and De la Cruz-Torres, E. 2020b. Growth dynamics of morphological and reproductive of Physalis peruviana L. M1 plants obtained from sedes irradiated with Gamma rays. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 48(1):200-209. Doi:10.15835/nbha48111745.

Beyaz, R.; Kahramanogullari, C. T.; Yildiz, C.; Darcin, E. S. y Yildiz, M. 2016. The effect of gamma radiation on seed germination and seedling growth of Lathyrus chrysanthus Boiss. Under in vitro conditions. J. Environ. Radioact. 162-163:129-133. Doi: 10.1016/j.jenvrad. 2016.05.006. DOI: https://doi.org/10.1016/j.jenvrad.2016.05.006

Canul-Ku, J.; García-Pérez, F.; Campos-Bravo, E.; Barrios-Gómez, E. J.; De la Cruz-Torres, E.; García-Andrade, J. M.; Osuna-González; F. de J. y Ramírez-Rojas, S. 2012. Efecto de la irradiación sobre nochebuena silvestres (Euphorbia pulcherrima Willd. ex Klotzsch) en Morelos. Rev. Mex. Cienc. Agríc. 3(8):1495-1507.

Canul-Ku, J.; García-Pérez, F.; Barrios-Gómez, E. J. y Rangel-Estrada, S. E. 2019. Juanita, nueva variedad de nochebuena para interior derivada por mutagénesis. Rev. Fitotec. Mex. 42(2):191-192. Doi: 10.35196/rfm.2019.2.191.

Castillo-Martínez, C. R.; De la Cruz, T. E.; Carrillo-Castañeda, G. y Avendaño-Arrazate, C. H. 2015. Inducción de mutaciones en crisantemo (Dendranthema grandiflora) usando radiación gamma y etil metano sulfonato. Agroproductividad. 8(2):60-64.

Chikelu, M. 2013. Induced mutations unleash the potential of plant genetic resources for food and agriculture. Agronomy. 3(1):200-231. Doi:10.3390/agronomy3010200. DOI: https://doi.org/10.3390/agronomy3010200

Chopra, V. L. 2005. Mutagenesis: investigating the process and processing the outcome for crop improvement. Current Sci. 89(2):353-359.

Datta, S. K. and Teixeira, J. A. 2006. Role of induced mutagenesis for development of new flower colour and type in ornamentals. In: floriculture, ornamental and plant biotechnology: advances and topical issues. Teixeira da Silva, J. (Ed.). Global Science Books. London, United Kingdom. 640-645 pp.

De la Cruz, E. 2010. Aplicación de la energía nuclear en el mejoramiento de pseudocereales nativos de México. In: contribuciones del Instituto Nacional de Investigaciones Nucleares al avance de la ciencia y la tecnología en México. Mojica Duque G. (ed). Instituto Nacional de Investigaciones Nucleares. Estado de México, México. 407-420 pp.

Díaz-López, E.; Pichardo, R.; De la Cruz, T.; Norman, M. T.; Sandoval, R. F. y Vázquez-García, L. 2003. Variabilidad inducida en Tigridia pavonia (L.f.) D.C. var. Sandra por irradiación de bulbos con rayos gamma de 60Co. Rev. Chapingo Ser. Hortic. 9(2):235-241. DOI: https://doi.org/10.5154/r.rchsh.2002.06.037

Díaz-López, E.; Morales-Ruiz, A.; Olivar-Hernández, A. and Loeza-Corte, J. M. 2017. Gamma irradiation effect of 60Co on the germination of two subtropical species in the Tehuacán-Cuicatlán Valley. Inter. J. Adv. Eng. Res. Sci. 4(8):56-61. Doi. 10.22161/ijaers.4.8.10. DOI: https://doi.org/10.22161/ijaers.4.8.10

Di Rienzo, J. A.; Casanoves, F.; Balzarini, M. G.; González, L.; Tablada, M. y Robledo, C. W. 2008. InfoStat, versión 2008, Grupo InfoStat, FCA. Universidad Nacional de Córdoba, Argentina. 336 p.

Estrada-Basaldua, J. A.; Pedraza-Santos, M. E.; Cruz-Torres, E.; Martínez-Palacios, C.; Sáenz-Romero, C. y Morales-García, J. L. 2011. Efecto de rayos gamma 60Co en nardo (Polianthes tuberosa L.). Rev. Mex. Cienc. Agríc. 2(3):445-458.

FAO/IAEA. 2020. Mutant variety database. Vienna, Austria: Food and Agriculture Organization of the United Nations and International Atomic Energy Agency. https://mvd.iaea.org/#!Search.

Hernández-Muñoz, S.; Pedraza-Santos, M. E.; López, P. A.; De la Cruz-Torres, E.; Martínez-Palacios, A.; Fernández-Pavia, S. P. y Chávez-Bárcenas, A. T. 2017. Estimulación de la germinación y desarrollo in vitro de Laelia autumnalis con rayos gamma. Rev. Fitotec. Mex. 40(3):271-283.

Hernández-Muñoz, S.; Pedraza-Santos, M. E.; López, P. A.; Gómez-Sanabria, J. M. y Morales-García, J. L. 2019. Mutagenesis in the improvement of ornamental plants. Rev. Chapingo Ser. Hortic. 25(3):151-167. Doi: 10.5154/r.rchsh.2018.12.022.

Jain, M. S. 2005. Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell, Tissue and Organ Culture. 82:113-123. Doi: 10.1007/s11240-004-7095-6. DOI: https://doi.org/10.1007/s11240-004-7095-6

Maluszynski, M.; Nichterlein, K.; Van-Zanten, L. and Ahloowalia, B. S. 2000. Official released mutant varieties-the FAO/IAEA database. Mutation Breeding. 12:1-88.

Oladosu, Y.; Rafii, M. Y.; Absullah, N.; Hussin, G.; Ramli, A.; Rahim, H.; Miah, G. y Usman, M. 2016. Principles and application of plant mutagenesis in crop improvement: a review. Biotechnol. Biotechnol. Equip. 30(1):1-16. Doi: 10.1080/13102818.2015.1087333. DOI: https://doi.org/10.1080/13102818.2015.1087333

Parry, M. A.; Madgwick, P. J.; Bayon, C.; Tearall, K.; Hernández-López, A.; Baudo, M.; Rakszegi, M.; Hamada, W.; Al-Yassin, A.; Ouabbou, H.; Labhilili, M. and Phillips, A. L. 2009. Mutation discovery for crop improvement. J. Exp. Bot. 60(10):2817-2825. Doi: 10.1093/jxb/erp189. DOI: https://doi.org/10.1093/jxb/erp189

Pérez-Nicolás, M. 2020. Análisis de la diversidad de Euforbias nativas de México para su uso sustentable como ornamentales. Colegio de Postgraduados. Tesis de Doctorado en Ciencias. Montecillo, Texcoco, México.72-91 pp.

Pérez-Nicolás, M.; Colinas-León, M. T.; Alia-Tejacal, I. y Peña-Ortega, G. 2021. Fenología y potencial ornamental de Euphorbia fulgens Karw. ex Klotzsch en México. Acta Agrícola y Pecuaria. E0071016. Doi: 10.30973/aap/2021.7.0071016.

Pérez-Nicolás, M.; Colinas-León, T.; Alia-Tejacal, I.; Peña-Ortega, G.; González-Andrés, F. and Beltrán-Rodríguez, L. 2021. Morphological variation in scarlet plume (Euphorbia fulgens Karw ex Klotzsch, Euphorbiaceae), and underutilized ornamental resource of Mexico with global importance. Plants. 10(10):2020. Doi:10.3390/plants10102020.

Rangaiah, S. 2006. Induced genetic variation for days to flowering and maturity following hybridization and mutagenesis in chilli (Capsicum annuum L.). Karnataka J. Agric. Sci. 19:382-384.

The Royal Horticultural Society. 2001. Color chart. The Royal Horticultural Society: London, UK.

Ukai, Y. and Nakagawa, H. 2011. Strategies and approaches in mutant populations development for mutant selection in seed propagated crops. In: plant mutation breeding and biotechnology. Shu, Q. Y., Forster, B. P. y Nakagawa, H. (Ed). Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. Vienna, Austria. 209-221 pp. DOI: https://doi.org/10.1079/9781780640853.0209

UPOV. 1988. Guidelines for the conduct of tests for distinctness, homogeneity and stability. Euphorbia fulgens. Geneva, Switzerland: international union for the protection of new varieties of plants. https://www.upov.int/genie/es/details.xhtml?cropId=2262.

Yamaguchi, H. 2018. Mutation breeding of ornamental plants using ion beams. Breed. Sci. 68(1):71-78. Doi: 10.1270/jsbbs.17086. DOI: https://doi.org/10.1270/jsbbs.17086

Yamaguchi, H.; Shimizu, A.; Degi, K. and Morishita, T. 2008. Effects of dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in Chrysanthemum. Breed. Sci. 58(3):331-335. Doi: 10.1270/jsbbs.58.331. DOI: https://doi.org/10.1270/jsbbs.58.331

Wu, D.; Hou, S.; Qian, P.; Sun, L. D.; Zhang, Y. C. and Li, W. J. 2009. Flower color chimera and abnormal leaf mutants induced by 12C6+heavy ions in Salvia splendes Ker-Grawl. Sci. Hortic. 121(4):462-467. Doi: 10.1016/j.scienta.2009.02.022. DOI: https://doi.org/10.1016/j.scienta.2009.02.022

Published

2022-05-07

How to Cite

Pérez Nicolás, Mónica, María Teresa Colinas y León, Iran Alia Tejacal, Carlos Rodríguez Barbecho, Margarita Gisela Peña Ortega, and Eulogio Cruz De La Cruz Torres. 2022. “Induced Variability in Morphological Characteristics of Euphorbia Fulgens Karw. Ex Klotzsch”. Revista Mexicana De Ciencias Agrícolas 13 (3). México, ME:469-82. https://doi.org/10.29312/remexca.v13i3.2845.

Issue

Section

Articles

Most read articles by the same author(s)