Why is Mexico highly vulnerable to climate change?

Authors

  • Victor Manuel Rodríguez Moreno Campo Experimental Pabellón-INIFAP. Carretera Aguascalientes-Zacatecas km 35.5, Pabellón de Arteaga, Aguascalientes. CP. 20668
  • Guillermo Medina García Campo Experimental Zacatecas. Carretera Zacatecas-Fresnillo km 24.5, Calera de Victor Rosales, Zacatecas. CP. 98500. (medina.guillermo@inifap.gob.mx). 3Campo Experimental Cotaxtla. Carretera Xalapa-Veracruz km 3.5, Ánimas, Xalapa, Veracruz. CP. 91190
  • Gabriel Diaz Padilla Campo Experimental Cotaxtla. Carretera Xalapa-Veracruz km 3.5, Ánimas, Xalapa, Veracruz. CP. 91190
  • Jose Ariel Ruiz Corral Universidad de Guadalajara- Departamento de Ciencias Ambientales. Camino Ing. Ramón Padilla Sánchez núm. 2100, La Venta del Astillero, Zapopan, Jalisco. CP. 45110
  • Juan Estrada Avalos Centro Nacional de Investigación Disciplinaria-RASPA. Margen Derecha Canal Sacramento km 6.5, Gómez Palacio, Durango. CP. 27130.
  • Jorge Ernesto Mauricio Ruvalcaba Campo Experimental Pabellón-INIFAP. Carretera Aguascalientes-Zacatecas km 35.5, Pabellón de Arteaga, Aguascalientes. CP. 20668

DOI:

https://doi.org/10.29312/remexca.v12i25.2819

Keywords:

climate change, climate variability, Mexico, primary sector

Abstract

This manuscript provides an overview of the vulnerability of Mexico, as a geographic region, to the impacts of climate change. It is in the dynamism of the primary sector where global climate changes have the greatest influence. To rescale global observations at a local, regional and national scale, INIFAP as a public research center, provides technological solutions available to users, decision makers, researchers, academics and consultants. Since its creation, the institute maintains lines of research to study the impacts of climate change on agriculture, livestock and forestry. This is carried out through the organization of national and international technical-scientific exchange meetings and the execution of research and service projects. Through the integration and analysis of databases, the implementation of machine learning techniques in computing architectures, time series of satellite images and data on exchange processes between the ground cover and the atmosphere, the National Laboratory Modeling and Remote Sensors offers the user products and services based on ICTs. Numerical rain and drought forecasts make up the institutional offer to provide useful information to mitigate the effects of climate change in the primary sector. Through these products and services, a paradigm shift is promoted for the study of the impacts of climate change in Mexico.

Downloads

Download data is not yet available.

References

Almgren, K.; Alshahrani, S. and Lee, J. 2019. Weather data analysis using hadoop to mitigate event planning disasters. https://scholarworks.bridgeport.edu/xmlui/handle/123456789/1105.

Bauer, A; Feichtinger, J. and Steurer, R. 2012. The governance of climate change adaptation in 10 OECD countries: challenges and approaches. J. Environ. Policy Plan 14(12):279-304. https://doi.org/10.1080/1523908X.2012.707406. DOI: https://doi.org/10.1080/1523908X.2012.707406

CIMA. 2020. Centro de Información de Mercados Agroalimentarios. Reporte del mercado de maíz. https://www.cima.aserca.gob.mx/work/models/cima/pdf/cadena/2020/reporte-mercado-maiz-200120.

Cherif, R.; Hasanov, F. y Husain, A. 2017. El fin de la era del petróleo: es sólo cuestión de tiempo, FMI Blog, FMN. https://blog-dialogoafondo.imf.org/?p=8291.

CONAGUA. 2018. Estadísticas del agua en México. CONAGUA. Sistema Nacional de Información. Disponible en: http://sina.conagua.gob.mx/publicaciones/EAM-2018.pdf.

Del-Río, J.; Rosales, M.; Ortega, V. y Maya, S. 2016. Análisis de la reforma energética, serie: reformas estructurales: avances y desafíos. Instituto Belisario Domínguez. Senado de la República. número 6. http://bibliodigitalibd.senado.gob.mx/bitstream/handle/123456789/ 3404/ energetica.pdf?sequence =1&isAllowed=y.

Faghmous, J. H. and Kumar, V. 2014. A big data guide to understanding climate change: the case for theory-guided data science. Big Data 2:155-163. doi:10.1089/big.2014.0026. DOI: https://doi.org/10.1089/big.2014.0026

Fellmann, T. 2012. The assessment of climate change-related vulnerability in the agricultural sector: reviewing conceptual frameworks. In: building resilience for adaptation to climate change in the agriculture sector. FAO/OECD Workshop, Rome, Italy.

Ford, J. D.; Tilleard, S. E.; Berrang-Ford, L.; Araos, M.; Biesbroek, R. and Lesnikowski, A. C. 2016. Opinion: big data has big potential for applications to climate change adaptation. Proc. Natl. Acad. Sci. USA. 113:10729-10732. doi: 10.1073/pnas.1614023113. DOI: https://doi.org/10.1073/pnas.1614023113

Groombridge, B. and Jenkin, M. D. 2002. World Atlas of biodiversity: earth's living resources in the 21st Century. UNEP-WCMC, Cambridge.

Garatuza-Payán, J.; Rodríguez, J. C. and Watts, C. J. 2011. Environmental monitoring and crop water demand. In: Oswald-Spring, Ú. (Ed.). Water resources in Mexico: scarcity, degradation, stress, conflicts, management, and policy. Springer, Berlin. 101-110 p. DOI: https://doi.org/10.1007/978-3-642-05432-7_7

Hao, K. 2019. Here are 10 ways AI could help fight climate change. MIT technology review. https://www.technologyreview.com/2019/06/20/134864/ai-climate-change-machine-learning/.

Hua-Dong, G.; Li, Z. and Lan-Wei, Z. 2015. Earth observation big data for climate change research, Adv. Climate Change Res. 6(2):108-117. DOI: https://doi.org/10.1016/j.accre.2015.09.007

Impacto Social Consultores. Panorama. 2021 de energías renovables en México. http://www.impactosocialconsultores.com/blog/2020/5/11/panorama-2020-de-energas-renovables.

Lieverman, D. E. 1999. Vulnerability and adaptation to drought in Mexico. Natural Res. J. 39(1):99-115.

México ante el Cambio Climático. 2021. Información sobre la implementación de la política climática subnacional https://cambioclimatico.gob.mx/informacion-sobre-la-politica-climatica-subnacional/.

Manogaran, G. and Lopez, D. 2018. Spatial cumulative sum algorithm with big data analytics for climate change detection. Comput. Electr. Eng. 65:207-221. doi: 10.1016/j.compeleceng. 2017.04.006. DOI: https://doi.org/10.1016/j.compeleceng.2017.04.006

Metcalfe, S. E. 1987. Historical data and climate change in Mexico-A Review. Geographical J. 153(2):211-222. DOI: https://doi.org/10.2307/634873

Mauser, W.; Klepper, G.; Rice, M.; Schmalzbauer, B. S.; Hackman, H.; Leemans, R. and Moore, H. 2013. Transdisciplinary global change research: the co-creation of knowledge for sustainability. Curr. Opin. Environ. Sustain. 5(3-4):420-431. Doi:10.1016/ j.cosust.2013.07.001. DOI: https://doi.org/10.1016/j.cosust.2013.07.001

Oury, D. T. M. and Singh, A. 2018. Data analysis of weather data using hadoop technology. Smart Computing and Informatics. Springer: Singapore. 723- 730 pp. DOI: https://doi.org/10.1007/978-981-10-5544-7_71

Oswald-Spring, Ú. 2014. Water security and national water law in Mexico. Earth perspectives. 1(7):1-15. http://www.earth-perspectives.com/1/1/7. DOI: https://doi.org/10.1186/2194-6434-1-7

Oswald-Spring, U. y Brauch, H. G. 2009b. Reconceptualizar la seguridad en el siglo XXI. Centro de Ciencias de la Atmósfera-Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades-Centro Regional de Investigaciones Multidisciplinarias-Universidad Nacional Autónoma de México (UNAM). Senado de la República LX Legislatura, Cuernavaca, Morelos, México AFES-Press. 887 p.

Senado de la República. 2003. Dictamen de las comisiones unidas de puntos constitucionales; de energía y estudios legislativos, primera, con proyecto de decreto por el que se reforman y adicionan diversas disposiciones de la constitución política de los Estados Unidos Mexicanos en materia de energía, Senado de la República. http://sil.gobernacion.gob.mx/ archivos/documentos/2013/12/asun-3054419-20131210-1386743657.

SENER. 2019. Secretaría de Energía. Balance nacional de energía 2018. Subsecretaría de Planeación y Transición Energética. Dirección General de Planeación e Información Energéticas. Ciudad de México.

Published

2021-11-09

How to Cite

Rodríguez Moreno, Victor Manuel, Guillermo Medina García, Gabriel Diaz Padilla, Jose Ariel Ruiz Corral, Juan Estrada Avalos, and Jorge Ernesto Mauricio Ruvalcaba. 2021. “Why Is Mexico Highly Vulnerable to Climate Change?”. Revista Mexicana De Ciencias Agrícolas 12 (25). México, ME:45-57. https://doi.org/10.29312/remexca.v12i25.2819.

Most read articles by the same author(s)