Chitosans and chitosan-sodium octanoate composite reduce strawberry rot in postharvest

Authors

  • Sigifredo López-Díaz Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Michoacán. Jiquilpan, Michoacán, México. CP. 59510. Tel. 353 5330218, ext. 82923.
  • Ma. Guadalupe Sandoval-Flores Centro Multidisciplinario de Estudios en Biotecnología-Facultad de Medicina Veterinaria y Zootecnia- Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México. CP. 58893. Tel. 443 2958029, ext. 111.
  • Luis Enrique Flores-Pantoja Licenciatura en Genómica Alimentaria-Universidad de La Ciénega del Estado de Michoacán de Ocampo. Sahuayo, Michoacán, México. CP. 59103. Tel. 353 5320762, ext. 1420
  • Rafael Jiménez-Mejía Licenciatura en Genómica Alimentaria-Universidad de La Ciénega del Estado de Michoacán de Ocampo. Sahuayo, Michoacán, México. CP. 59103. Tel. 353 5320762, ext. 1420
  • Gustavo Santoyo Instituto de Investigaciones Químico Biológicas-Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México. CP. 58030. Tel. 443 3265788, ext. 125.
  • Pedro Damián Loeza-Lara Licenciatura en Genómica Alimentaria-Universidad de La Ciénega del Estado de Michoacán de Ocampo. Sahuayo, Michoacán, México. CP. 59103. Tel. 353 5320762, ext. 1420

DOI:

https://doi.org/10.29312/remexca.v12i6.2705

Keywords:

innocuous alternatives, fungal diseases, antifungal polymers

Abstract

Strawberry (Fragaria x ananassa) is an exquisite food, which provides health benefits, making it the berry with the highest production and export in Mexico. However, it is highly perishable, susceptible to postharvest damage, mainly by Botrytis cinerea and Rhizopus stolonifer, among others. The use of pesticides in preharvest is the control strategy of these pathogens; however, pesticides are documented to harm human health and the ecosystem, showing the need to explore friendly alternatives. Reagent grade chitosan (QGR) is an innocuous polymer with widely reported antifungal activity, while sodium octanoate (8:0) (OS) also has this property; however, so far it is unknown whether commercial grade chitosan (QGC) (the most suitable candidate to conduct a larger commercial study, due to its cost), available in Mexico, has the same effect. Therefore, the objective of this research was to evaluate the effectiveness of QGR and the QGR-OS composite in the protection of strawberry in postharvest and compare it with that of QGC and that of the QGC-OS composite. The compounds were sprayed on the fruits and incubated simulating export conditions. The results showed significant reduction in the severity and incidence of postharvest strawberry fungal diseases after the application of QGR, QGC and QGR-OS, QGC-OS, but not that of OS applied alone. QGC and the QGC-OS composite are excellent candidates for use in a larger commercial study.

Downloads

Download data is not yet available.

References

Arceo-Martínez, M. T.; Jiménez-Mejía, R.; Salgado-Garciglia, R.; Santoyo, G.; López-Meza, J. E. and Loeza-Lara, P. D. 2019. In vitro and in vivo anti-fungal effect of chitosan on post-harvest strawberry pathogens. Agrociencia. 53(8):1297-1311. https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1877/1874.

Barnett, H. L. and Hunter, B. B. 1998. Illustrated genera of imperfect fungi. 4th (Ed.). APS Press. Minnesota, USA. 240 p.

Curl, C. L.; Spivak, M.; Phinney, R. and Montrose, L. 2020. Synthetic pesticides and health in vulnerable populations: agricultural workers. Curr. Envir. Health Rpt. 7(1):13-29. Doi: https://doi.org/10.1007/s40572-020-00266-5.

De Oliveira, P. R.; Ribeiro, P. A.; Oliveira, O. N. and Berbeitas, M. P. 2020. Interaction of chitosan derivatives with cell membrane models in a biologically relevant medium. Colloid. Surface. B. 192:1-11. Doi: https://doi.org/10.1016/j.colsurfb.2020.111048.

Feliziani, E. and Romanazzi, G. 2016. Postharvest decay of strawberry fruit: etiology, epidemiology, and disease management. J. Berry Res. 6(1):47-63. Doi: 10.3233/JBR-150113. DOI: https://doi.org/10.3233/JBR-150113

Forbes-Hernández, T. Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; González-Paramás, A. M.; Santos-Buelga, C.; Mezzetti, B.; Quiles, J. L.; Battino, M.; Giampieri, F. and Bompadre, S. 2017. Strawberry (cv Romina) methanolic extract and anthocyanin-enriched fraction improve lipid profile and antioxidant status in HepG2 cells. Int. J. Mol. Sci. 18(6):1149-1154. Doi: 10.3390/ijms18061149. DOI: https://doi.org/10.3390/ijms18061149

Hassaan, M. A. and El Nemr, A. 2020. Pesticides pollution: Classification, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 46(3):207-209. Doi: https://doi.org/10.1016/j.ejar.2020.08.007.

Hernández-Muñoz, P.; Almenar, E.; Del Valle, V.; Velez, D. and Gavara, R. 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria x ananassa) quality during refrigerated storage. Food Chem. 110(2):428-435. Doi: 10.1016/j.foodchem.2008.02.020. DOI: https://doi.org/10.1016/j.foodchem.2008.02.020

Liu, J.; Tiang, S.; Meng, X. and Xu, Y. 2007. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol. Technol. 44(3):300-306. Doi: https://doi.org/10.1016/j.postharvbio.2006.12.019. DOI: https://doi.org/10.1016/j.postharvbio.2006.12.019

Liu, S.; Weibin, R.; Jing, L.; Hua, X.; Jingan, W.; Yubao, G. and Jingguo, W. 2008. Biological control of phytopathogenic fungi by fatty acids. Mycopathology. 166(2):93-102. Doi:10.1007/s11046-008-9124-1. DOI: https://doi.org/10.1007/s11046-008-9124-1

Lizardi-Mendoza, J.; Argüelles, M. W. M. and Goycoolea, V. F. M. 2016. Chemical characteristics and functional properties of chitosan. In Bautista-Baños, S.; Romanazzi, G.; Jiménez-Aparicio, A. (Ed.). Chitosan in the preservation of agricultural commodities. Elsevier: Academic Press. 3-31 pp. http://dx.doi.org/10.1016/B978-0-12-802735-6.00001-X. DOI: https://doi.org/10.1016/B978-0-12-802735-6.00001-X

Lombardi, N.; Caira, S.; Troisel, A. D.; Scaloni, A.; Vitaglione, P.; Vinale, F.; Marra, R.; Salzano, A. M.; Lorito, M. and Woo, S. L. 2020. Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and quality. Font. Microbiol. 11:1364. Doi: 10.3389/fmicb.2020.01364.

Lopes, U. P.; Zambolim, L.; Pinho, D. B.; Barros, A. V.; Costa, H. and Pereira, O. L. 2014. Postharvest rot and mummification of strawberry fruits caused by Neofusicoccum parvum and N. kwambonambiense in Brazil. Trop. Plant Pathol. 39(2):178-183. Doi: https://doi. org/10.1590/S1982-56762014000200009. DOI: https://doi.org/10.1590/S1982-56762014000200009

Maas, J. 1998. Compendium of strawberry diseases. 2nd (Ed). APS Press. St. Paul, Minnesota, USA. 138 p.

McKinney, H. H. 1923. Influence of soil temperature and moisture on infection of wheat seedlings by Helmintosporium sativum. J. Agric. Res. 26(5):195-218. http://handle.nal.usda.gov/ 10113/IND43966679.

Mejdoub‐Trabelsi, B.; Touihri, S.; Ammar, N.; Riahi, A. and Daami‐Remadi, M. 2019. Effect of chitosan for the control of potato diseases caused by Fusarium species. J. Phytopatol. 168(1):18-27. Doi: 10.1111/jph.12847.

Pohl, C. H.; Kock, L. F. J. and Thibane, V. S. 2011. Antifungal free fatty acids: a review. In: science against microbial pathogens: Communicating current research and technology advances. Méndez V. A. (Ed.). 61-71 pp.

Rodríguez, P. A. T.; Jatomea, M. P.; Bautista, B. S.; Cortez, R. M. O. y Ramírez, A. M. A. 2016. Actividad antifúngica in vitro de quitosanos sobre Bipolaris oryzae patógeno del arroz. Acta Agron. 65(1):98-103. http://www.redalyc.org/articulo.oa?id=169943143015. DOI: https://doi.org/10.15446/acag.v65n1.48235

Rodríguez-Pedroso, A. T.; Ramírez-Arrebato, M. A.; Rivero-González, D.; Bosquez-Molina, E.; Barrera-Necha, L. L. y Bautista-Baños, S. 2009. Propiedades químico-estructurales y actividad biológica de la quitosana en microorganismos fitopatógenos. Rev. Chapingo Ser. Hortic. 15(3):307-317. http://www.scielo.org.mx/scielo.php?script=sci-arttext&pid= S1027-152X2009000500012.

Rodríguez-Romero, V. M.; Villanueva-Arce, R.; Trejo-Raya, A. B. and Bautista-Baños, S. 2019. Chitosan and Pseudomonas fluorescens extracts for Alternaria alternata control in tomato (Solanum lycopersicum). Mex. J. Phytopathol. 37(2):202-219. Doi: 10.18781/R.MEX.FIT. 1812-2.

Romanazzi, G.; Feliziani, E.; Baños, B.S. and Sivakumar, D. 2017. Shelf-life extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci. Nutr. 57(3):579-601. Doi: https://doi.org/10.1080/10408398.2014.900474. DOI: https://doi.org/10.1080/10408398.2014.900474

Romanazzi, G.; Feliziani, E.; Satini, M. and Landi, L. 2013. Effectiveness of postharvest treatment with chitosan and others resistance inducers in the control of storage decay of strawberry. Post. Biol. Tech. 75:24-27. Doi: http://dx.doi.org/10.1016/j.postharvbio.2012.07.007. DOI: https://doi.org/10.1016/j.postharvbio.2012.07.007

Ryabushkina, N. A. 2005. Synergism of metabolite action in plant responses to stresses. Russ. J. Plant Physiol. 52:547-552. Doi: https://doi.org/10.1007/s11183-005-0081-y. DOI: https://doi.org/10.1007/s11183-005-0081-y

Sandoval, F. M. G.; Jiménez, M. R.; Santoyo, G.; Alva, M. P. N.; López, M. J. E. and Loeza, L. P. D. 2018. Chitosan-fatty acids composite reduce Botrytis cinerea infection on post-harvest strawberry. Nova Scientia. 10(21): 207-227. doi.org/10.21640/ns.v10i21.1599. Verlee, A.; Mincke, S. and Stevens, C.V. 2017. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 164:268-283. Doi: https://doi.org/10.1016/j.carbpol.2017.02.001. Yoon, B. K.; Jackman, J. A.; Valle-González, E. R. and Nam-Joon, Ch. 2018. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19(4):1114.10.3390/ijms19041114.

Published

2021-09-20

How to Cite

López-Díaz, Sigifredo, Ma. Guadalupe Sandoval-Flores, Luis Enrique Flores-Pantoja, Rafael Jiménez-Mejía, Gustavo Santoyo, and Pedro Damián Loeza-Lara. 2021. “Chitosans and Chitosan-Sodium Octanoate Composite Reduce Strawberry Rot in Postharvest”. Revista Mexicana De Ciencias Agrícolas 12 (6). México, ME:1131-37. https://doi.org/10.29312/remexca.v12i6.2705.

Issue

Section

Investigation notes

Most read articles by the same author(s)