Soil and foliar nutritional diagnosis in corn cultivation

Authors

  • Fresia Pacheco-Sangerman Department of Soils-Chapingo Autonomous University. Mexico-Texcoco highway km 38.5, Chapingo, State of Mexico, Mexico. ZC. 56230.
  • Víctor Prado-Hernández Department of Soils-Chapingo Autonomous University. Mexico-Texcoco highway km 38.5, Chapingo, State of Mexico, Mexico. ZC. 56230.
  • Ranferi Maldonado Torres Department of Soils-Chapingo Autonomous University. Mexico-Texcoco highway km 38.5, Chapingo, State of Mexico, Mexico. ZC. 56230.
  • Edmundo Robledo-Santoyo Department of Soils-Chapingo Autonomous University. Mexico-Texcoco highway km 38.5, Chapingo, State of Mexico, Mexico. ZC. 56230.

DOI:

https://doi.org/10.29312/remexca.v13i6.2691

Keywords:

grain yield, nutritional diagnosis, plant nutrition

Abstract

It is important to define optimal fertilization doses for proper management of crop nutrition and significant improvement of harvest yield and quality. The present work was carried out in 2019 in the municipality of Texcoco, Estado de México. With the aim of evaluating five doses of fertilization based on the diagnosis of soil fertility so that through three foliar diagnostic methodologies determine the nutritional balance. The treatments evaluated were (T0: absolute control, T1: producer dose, T2: 0.5 of the optimal dose, T3: optimal dose, T4: 1+0.5 of the optimal dose) in two varieties of corn (Estrella and Celeste). The results obtained showed that the soil is clayey, with a neutral pH, very low in Cu, low in Fe and Mn and medium in N, Zn and CEC, high in organic matter and very high in P, K, Ca, Mg and B. The diagnosis made with the three interpretation methodologies showed that nutrients N and Zn were the most deficient, while Ca and B were present at high levels. The concentration of soil nutrients and the Kenworthy foliar diagnosis showed a direct correlation for the elements Cu and Mn, while P, K, Ca, Mg and B were determined as medium and high in both the soil and the plant. For the DRIS diagnosis, medium or sufficient to high levels of Ca, Mg and B were determined both in the soil and in the plant. Finally, the concentration of Cu in the soil and plant was low, while that of B was high.

Downloads

Download data is not yet available.

References

Ankerman D. B. S. and Large R. 1977. Soil and plant analysis. A & L Agricultural Laboratories. Memphis, TN, USA.

Beaufils, E. R. 1973. Diagnosis and Recommendation Integrated System. (DRIS). A general scheme for experimentation and calibration based on principles developed from research in plant nutrition. Soil Science Bulletin 1. University of natal. Pietermaritzburg, South Africa. 1-132 pp.

Camberato, J. J. and Pan, W. L. 2000. Bioavailability of calcium, magnesium, and sulfur. In: summer, M. E. (Ed). Handbook of soil science. CRC Press. Boca Raton, Florida. Doi: 10.3390/s130810823. D53-D70. DOI: https://doi.org/10.3390/s130810823

Conde, D. L.; Alia, T. I.; Valdez, A. L. A.; Ariza, F. R.; Juárez, L. P.; Pérez, A. G. A.; Pelayo, Z. C.; Díaz, L. S. F. y Martínez, M. A.2018. La dosis de fertilización afecta el rendimiento y calidad en limón persa (Citrus latifolia Tan.). Acta Agrícola y Pecuaria. 4(1):1-9. DOI: https://doi.org/10.30973/aap/2018.4.1/1

Fontanetto, H. y Keller, O. 2006. Manejo de la fertilización en maíz. Experiencias en la región pampeana argentina. Información técnica cultivos de verano. 106:85-113. http://rafaela.inta .gov.ar/info/documentos/miscelaneas/106/misc106-085.pdf.

Horneck, D. A.; Sullivan, D. M.; Owen, J. S. and Hart, J. M. 2011. Soil test interpretation guide. [Corvallis, Or.]: Oregon state university, extension service. http://ir.library.oregonstate. edu/xmlui/handle/1957/22023. 73-74 pp.

Imakumbili, M. L. E.; Semu, E.; Semoka, J. M. R.; Abass, A. and Mkamilo, G. 2020. Plant tissue analysis as a tool for predicting fertilizer needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use. Plos One. 15(2):e022864. https://doi.org/ 10.1371/journal.pone.0228641.

Jones, J. J. B. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. 1st. Ed. CRC Press. https://doi.org/10.1201/9781420025293. DOI: https://doi.org/10.1201/9781420025293

Kenworthy, A. L. 1961. Interpreting the balance of nutrient-elements in leaves of fruit trees. Reuther W. Plant Analysis and Fertilizers Problems. 28-43 pp.

Kenworthy, A. L. 1967. Plant analysis and interpretation of analysis for horticulture crops. In: soil testing and plant analysis. Part II. Soil Science Society of America. Madison, WI. 59-76 pp.

Libohova, Z. C.; Seybold, D.; Wysocki, S.; Wills, P.; Schoeneberger, C.; Williams, D.; Lindbo, D.; and Owens, P. R. 2018. Reevaluating the effects of soil organic matter and other properties on available water-holding capacity using the national cooperative soil survey characterization database. Journal of soil and water conservation. 73(4):411-421. www.jswconline.org/content/73/4/411.full.pdf+html.

Lucena, J. R. 2002. Informe DRIS: Normas para el diagnóstico del análisis foliar del olivo, partiendo de la base de datos de Fertiberia. Madrid, España. 9-18 pp.

Marschner, H. 2012. Mineral nutrition of higher plants. Third edition. Academic Press, London.

Montañes, L.; Heras, L. y Sanz, M. 1991. Desviación del óptimo porcentual (DOP): Nuevo índice para la interpretación de análisis vegetal. Zaragoza, España. Aula Dei. 3-4:93-107.

Moraghan, J. T. and Mascagni, H. J. 1991. Environmental and soil factors affecting micronutrient deficiencies and toxicities. In: luxmoore, R. J. (Ed). Micronutrients in agriculture, 2nd. Soil Science Society of America. Madison, WI. 371-425 pp. DOI: https://doi.org/10.2136/sssabookser4.2ed.c11

Morejon, M. P.; Herrera, J. A. Ayra, P. C.; González, C. P.; Rivera, E. R.; Fernández, P.; Peña, R. E.; Téllez, R. P.; Rodríguez, N. C. and Noval, P. B. M. 2017. Alternatives in nutrition of transgenic maize FR-Bt1 (Zea mays L): response in growth development, and production. Cultivos Tropicales. 38(4):146-155.

Mortvedt, J. J. 2000. Bioavailability of micronutrients. In: summer, M. E. (Ed). Handbook of soil science. CRC Press. Boca Raton, Florida.

Prado, R. and Caione, G. 2012. Plant analysis, soil fertility, roland nuhu issaka, IntechOpen. Doi: 10.5772/53388. https://www.intechopen.com/chapters/41131 DOI: https://doi.org/10.5772/53388

Rout, G. S. 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science. 3:1-24. Doi: 10.7831/ras.3.1. DOI: https://doi.org/10.7831/ras.3.1

SEMARNAT. 2022. Secretaria de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-021-RECNAT-2000. México. 1-70 pp.

Sedlacek, C.; Giguere, A. and Pjevac, P. 2020. Is too much fertilizer a problem? Front. Young minds. 8:63-65. Doi: 10.3389/frym.2020.00063.

Schmidt, W.; Thomine, S. and Buckhout, T. J. 2020. Editorial: Iron nutrition and interactions in plants. Front. Plant Sci. 10:1670. Doi: 10.3389/fpls.2019.01670.

Yousaf, M.; Li, X.; Zhang, Z.; Ren, T.; Cong, R.; Karim, S. T.; Fahad, S.; Shah, A. N. B. and Lu J. 2016. Nitrogen fertilizer management for enhancing crop productivity and nitrogen use efficiency in a rice-oilseed rape rotation system in China. Front. Plant Sci. 7:1 496. Doi: 10.3389/fpls.2016.01496. DOI: https://doi.org/10.3389/fpls.2016.01496

Zhang, W.; Liu, D. Y.; Li, C. X.; Cui, Z. L.; Chen, X. P.; Russell, Y. and Zou, C. Q. 2015. Zinc accumulation and remobilization in winter wheat as affected by phosphorus application. Field Crop Research. 184:155-161. DOI: https://doi.org/10.1016/j.fcr.2015.10.002

Published

2022-10-24

How to Cite

Pacheco-Sangerman, Fresia, Víctor Prado-Hernández, Ranferi Maldonado Torres, and Edmundo Robledo-Santoyo. 2022. “Soil and Foliar Nutritional Diagnosis in Corn Cultivation”. Revista Mexicana De Ciencias Agrícolas 13 (6). México, ME:1079-90. https://doi.org/10.29312/remexca.v13i6.2691.

Issue

Section

Articles

Most read articles by the same author(s)