Bacillus spp. on the growth and yield of Capsicum chinense Jacq.
DOI:
https://doi.org/10.29312/remexca.v13i1.2664Keywords:
Bacillus subtilis, ACC deaminase activity, indole acetic acid, phosphate solubilizationAbstract
Plant growth-promoting rhizobacteria are an alternative to improve the production and yield of horticultural crops such as habanero pepper in Yucatan. Eleven strains of the genus Bacillus, characterized by their properties related to the promotion of plant growth, were evaluated, finding the production of indole acetic acid from 0.046 to 5.45 μg ml-1, phosphate solubilization indices from 2.1 to 2.76 mm and from 13.01 to 55.82 mg L-1 of soluble phosphorus and ACC deaminase activity. Of which four strains with the best characteristics were selected for their properties with the promotion of plant growth, using as a model the habanero pepper, in which it was obtained that the strain of Bacillus subtilis CBMT51 promoted the growth of habanero pepper seedlings, improving in the number of leaves, leaf area and biomass of the seedlings by 37.1, 30% and 34.6%, respectively. In greenhouse tests with the same strain, an increase in the number of fruits and crop yield of 79.5% and 58.8%, respectively, was observed, in relation to the control. With B. subtilis CBMT2 being the strain that improved some growth variables such as final height (56%), number of shoots (92%) and total dry biomass (86%) with respect to the control. In conclusion, the results of this work show the potential of the strain of B. subtilis CBMT51 to be used as a biofertilizer in the production of habanero pepper.
Downloads
References
Abbasi, M. K.; Sharif, S.; Kazmi, M.; Sultan, T. and Aslam, M. 2011. Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosystems. 145(1):159-168. https://doi.org/ 10.1080/11263504.2010.542318.
Aguado-Santacruz, G. A.; Moreno-Gómez, B.; Jiménez-Francisco, B.; García-Moya, E. and Preciado-Ortiz, R. 2012. Impacto de los sideróforos microbianos y fitosidéroforos en la asimilación de hierro por las plantas: una síntesis. Rev. Fitotec. Mex. 35(1):9-21. http://www.scielo.org.mx/pdf/rfm/v35n1/v35n1a4.pdf.
Alexander, D. B. and Zuberer, D. A. 1991. Use of chrome azurol S reagents to evaluate siderophore produvtion by rizhosphere bacteria. Biology and Fertility of Soils. 12(1):39-45. https://doi.org/10.1007/BF00369386.
Almoneafy, A. A.; Xie, G. L.; Tian, W. X.; Xu, L. H.; Zhang, G. Q. and Ibrahim, M. 2012. Characterization and evaluation of Bacillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt. Afr. J. Biotechnol. 11(28):7193-7201. https://doi.org/10.5897/AJB11.2963.
Amaresan, N.; Jayakumar, V. and Thajuddin, N. 2014. Isolation and characterization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem. Indian J. Biotechnol. 13(2):247-255. http://nopr.niscair.res.in/handle/123456789/29149.
Badía, M. M. R.; Hernández, B. T.; Murrel, J. A. L.; Mahillon, J. y Pérez, M. H. 2011. Aislamiento y caracterización de cepas de Bacillus asociadas al cultivo del arroz (Oryza sativa L.). Rev. Bras. Agroecol. 6(1):90-99. https://orgprints.org/23097/1/Bad%C3%ADa-Aislamiento.pdf.
Beltrán, P. 2014. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Corpoica Ciencia y Tecnología Agropecuaria. 15(1):101-113. http://www.scielo.org.co/pdf/ccta/v15n1/v15n1a09.pdf.
Canto-Martín, J. C.; Medina-Peralta, S. y Morales-Avelino, D. 2004. Efecto de la inoculación con Azospirillum sp. En plantas de chile habanero (Capsicum chinense Jacq.). Trop. Subtrop. Agroecosys. 4(1):21-27. https://www.redalyc.org/articulo.oa?id=939/93940104.
Cisternas-Jamet, J.; Salvatierra-Martínez, R.; Vega-Gálvez, A.; Stoll, A.; Uribe, E. and Goñi, M. G. 2020. Biochemical composition as a function of fruit maturity stage of bell pepper (Capsicum annuum) inoculated with Bacillus amyloliquefaciens. Sci. Hortic. 263:109107. https://doi.org/10.1016/j.scienta.2019.109107.
Corrales, R. L. C.; Sánchez, L. L. C.; Arévalo, G. Z. Y. y Moreno, B. V. E. 2014. Bacillus: género bacteriano que demuestra ser un importante solubilizador de fosfato. Nova. 12(22):165-177. http://www.scielo.org.co/pdf/nova/v12n22/v12n22a06.pdf.
Datta, M.; Palit, R.; Sengupta, C.; Pandit, M. K. and Banerjee, S. 2011. Plant growth promoting rhizobacteria enhance growth and yield of chilli (Capsicum annuum L.) under field conditions. Australian J. Crop Sci. 5(5):531-536. https://pdfs.semanticscholar.org/0edd/ 62370223f6a2a4d8e912cf799eb008b378e4.pdfhttps://searchinformit.com.au/documentSummary;dn=280235183147214;res=IELHSS.
Dixit, R.; Agrawal, L.; Gupta, S.; Kumar, M.; Yadav, S.; Singh, P. C. and Shekhar N. C. 2016. Southern blight disease of tomato control by 1- aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillys lentimorbus B-30488. Plant Signaling and Behavior. 11(2):1113363. https://doi.org/10.1080/15592324.2015.1113363.
Esquivel-Cote, R.; Gavilanes-Ruiz, M.; Cruz-Ortega, R. and Huante, P. 2013. Importancia agrobiotecnológica de la enzima ACC desaminasa en rizobacterias, una revisión. Rev. Fitote. Mex. 36(3):251-258. http://www.scielo.org.mx/pdf/rfm/v36n3/v36n3a10.pdf.
Garay-Arroyo, A.; Sánchez, M. P.; García-Ponce, B.; Álvarez-Buyilla, E. R. and Gutiérrez, C. 2014. La homoeostasis de las auxinas y su importancia en el desarrollo de Arabidopsis thaliana. Rev. Educ. Bioqu. 33(1):13-22. http://www.scielo.org.mx/pdf/reb/v33n1/v33n 1a3.pdf.
Gil-Jae, J.; Young-Mog, K.; In-Jung, L.; Kyung-Sik, S. and In-Koo, R. 2004. Growth promotiom of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Letters. 26(6):487-491. https://link.springer.com/article/10.1023/B:BILE.0000019555.87121.34.
Gupta, M.; Kiran, S.; Gulati, A.; Singh, B. and Tewari, R. 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiological Research. 167(6):358-363. https://doi.org/10.1016/ j.micres.2012.02.004.
Hernández-Forte, I.; Nápoles-García, M. C. y Morales-Mena, B. 2015. Caracterización de aislados de rizobios provenientes de nódulos de soya (Glycine max L. Merril) con potencialidades en la promoción del crecimiento vegetal. Cultivos Tropicales. 36(1):65-72. http://scielo.sld.cu/scielo.php?script=sci-arttext&pid=S025859362015000100008&lng= es&nrm=iso.
Hernández-Leal, L. T.; Carrión, G. y Heredia, G. 2011. Solubilización in vitro de fosfatos por una cepa de Paecilomyces lilacinus (thom) samson. Agrociencia. 45(8):881-892. http://www.scielo.org.mx/scielo.php?script=sci-arttext&pid=S140531952011000800003 &lng=es&nrm=iso.
Jacoby, R.; Peukert, M.; Succurro, A.; Koprinova, A. and Kopriva S. 2017. The role of soil microorganims in plant mineral nutrition-current knowledge and future directios. Frontiers in plant science. 19(8):1-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610682 /pdf/fpls-08-01617.pdf.
Luna-Martínez, L.; Martínez, P. R. A.; Hernández, I. M.; Arvizu, M. S. M. y Pacheco, A. J. R. 2013. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Rev. Fitot. Mex. 36(1):63-69. http://www.scielo.org.mx/scielo. php?script=sci-arttext&pid=S018773802013000100007&lng=es&nrm=iso.
López-Bucio, J.; Campos-Cuevas, J. C.; Valencia-Cantero, E.; Velázquez-Becerra, C.; Farías-Rodríguez, R. y Macias-Rodríguez, L. I. 2009. Bacillus megaterium modifica la arquitectura de la raíz de Arabidopsis independientemente de auxinas y etileno. Rev. Biológicas. 11(1):1-8. http://www.usfx.bo/nueva/vicerrectorado/citas/tecnologicas-20/ arquitectura/46.pdf.
Mehta, P.; Chauhan, A.; Mahajan, R.; Mahajan, P. K. and Shirkot, C. K. 2010. Strain of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. Current Sci. 98(4):538-542. https://www.jstor.org/stable/24111705.
Mehta, S. and Nautiyal, C. S. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiol. 43(1):51-56. https://doi.org/10.1007/s0028400 10259.
Misra, S. and Sinh, C. P. 2020. ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 biotech. 10(3):119. https://link.springer.com/article/10.1007/s13205-020-2104-y.
Mussa, S. A. B.; Elferjani, H. S.; Haroun, F. A. and Abdelnabi, F. F. 2009. Determination of available nitrate, phosphate and sulfate in soil samples. Inter. J. Pharmtech Res. 1(3):598-604. http://uob.edu.ly/assets/uploads/pagedownloads/91d88-pt-35-20samira-20a-20ben-20musa-20-598-604--1-.pdf.
Noh-Medina, J.; Borges-Gómez, L. y Soria-Fregoso, M. 2010. Composición nutrimental de biomasa y tejidos conductores en chile habanero (Capsicum chinense Jacq). Trop. Subtrop. Agroecosys. 128(2):219-228. https://www.redalyc.org/articulo.oa?id=93913070003.
Ogugua, U. V.; Ntushelo, K.; Makungu, M. C. and Kanu, S. A. 2018. Effect of Bacillus subtilis BD2333 on seedlings growth of sweet pepper (Capsicum annuum), Swiss chard (Beta vulgaris) and lettuce (Lactuca sativa). Acta Hortic. 1204(26):201-210. https://www.ishs. org/ishs-article/1204-26.
Patten, C. L. and Glick, B. R. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68(8):3795-3801. https://doi.org/ 10.1128/AEM.68.8.3795-3801.2002.
Penrose, D. M. and Glick, B. R. 2003. Methods for isolating and characterizing ACC deaminase containing plant growth-promoting rhizobacteria. Physiol. Plantarum. 118(1):10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x.
Peña-Yam, L. P.; Ruíz-Sánchez, E.; Barboza-Corona, J. E. and Reyes-Ramírez, A. 2016. Isolation of Mexican Bacillus species and their effects in promoting growth of chili pepper (Capsicum annuum L. cv jalapeño). Indian J. Microbiol. 56(3):375-378. https://www.ncbi. nlm.nih.gov/pmc/articles/PMC4920762/. Pérez-Gutiérrez, A.; Pineda-Doporto, A.; Latournerie-Moreno, L.; Pam-Pech, W. y Godoy-Ávila, C. 2008. Niveles de evapotranspiración potencial en la producción de chile habanero. Terra Latinoam. 26(1):53-59.
Pradhan, N. and Sukla, L. B. 2005. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr. J. Biotechnol. 5(10):850-854. http://www.academicjournals.org/AJB.
Prakash, J. and Kumar, A. N. 2019. Phosphate-solubilizing Bacillus sp. enhaces growth, phosphorus uptake and oil yield on Mentha arvensis L. 3 Biotech. 9(4):126. https://link.springer.com/article/10.1007/s13205-019-1660-5.
Qureshi, M. A.; Ahmad, Z. A.; Akhtar, N.; Iqbal, A.; Mujeeb, F. and Shakir, M. A. 2012. Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. The J. Animal Plant Sci. 22(1):204-210.
SAS Institute. 2010. User’s guide: statistics, versión 9.3. SAS Inst. Inc., Cary, North Caroline, USA.
Sarwar, M.; Arshad, M.; Martens, D. A. and Frankenberg J. R. 1992. Triptophan-dependent biosynthesis of auxins in soil. Plant and Soil. 147(2):207-215. https://link.springer.com /article/10.1007/BF00029072.
Soria, F. M.; Tun, S. J.; Trejo, R. A. y Terán, S. R. 2002. Paquete tecnológico para la producción de chile habanero (Capsicum chinense Jacq). SEP. DGTA. ITA-2 Conkal, Yucatán, México. 75 p.
Souchie, E. L.; Saggin-Júnior, O. J.; Silva, E. M. R.; Campello, E. F. C.; Azcón, R. and Barea, J. M. 2006. Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of paraty, RJ-Brazil. Anais da Academia Brasileira de Ciências. 78(1):183-193. http://dx.doi.org/10.1590/S0001-37652006000100016.
Vega-Celedón, P.; Canchignia, M. H.; González, M. and Seeger, M. 2016. Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacteria. Cultivos Tropicales. 37 (Supl. 1):33-39. http://scielo.sld.cu/pdf/ctr/v37s1/ctr05s116.pdf.
Villareal-Delgado, M. F.; Villa-Rodríguez, E. D.; Cira-Chávez, L. A.; Estrada-Alvarado, M. I.; Parra-Cota, F. I. and Santos-Villalobos, S. S. 2018. El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Rev. Mex. Fitopat. 36(1):95-130. http://www.scielo.org.mx/pdf/rmfi/v36n1/2007-8080-rmfi-36-01-95-en.pdf.
Wahyudi, A. T.; Astuti, R. P.; Widyawati, A.; Meryandini, A. and Nawangsih, A. A. 2011. Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J. Microbiol. Antimicrobials. 3(2):34-40. http://repository.ipb.ac.id/handle/123456789/54530.
Walpola, B. C. and Yoon, M. H. 2013. In vitro solubilization of inorganic phosphates by phosphate solubilizing microorganisms. Afr. J. Microbiol. Res. 7(27):3534-3541. https://doi.org/ 10.5897/AJMR2013.5861.
Yousuf, J.; Thajudeen, J.; Rahiman, M.; Krishnankutty, S.; Alikunj, A. P. and Adbulla, M. H. A. 2017. Nitrogen fixing potential of various heterotrophic Bacillus strains from tropical estuary and adjacent coastal regions. J. Basic Microbiol. 57(11):922-932. https://doi.org/ 10.1002/jobm.201700072.
Yu, X.; Ai, C.; Xin, L. and Zhou, G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47(2):138-145. https://doi.org/10.1016/j.ejsobi.2010.11.001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.