Characterization of wild and cultivated chia populations

Authors

  • Alberto Calderón-Ruíz Tecnológico Nacional de México-Instituto Tecnológico de Roque. Carretera Celaya-Juventino Rosas km 8, Celaya, Guanajuato. CP. 38110
  • Salvador Montes-Hernández Campo Experimental Bajío-INIFAP. Carretera Celaya-San Miguel de Allende km 6.5, Celaya, Guanajuato. CP. 38010
  • M. Antonio García-Perea Tecnológico Nacional de México-Instituto Tecnológico de Roque. Carretera Celaya-Juventino Rosas km 8, Celaya, Guanajuato. CP. 38110
  • Jorge Covarrubias Prieto Tecnológico Nacional de México-Instituto Tecnológico de Roque. Carretera Celaya-Juventino Rosas km 8, Celaya, Guanajuato. CP. 38110
  • Cesar L. Aguirre-Mancilla Tecnológico Nacional de México-Instituto Tecnológico de Roque. Carretera Celaya-Juventino Rosas km 8, Celaya, Guanajuato. CP. 38110
  • Juan Carlos Raya Pérez Tecnológico Nacional de México-Instituto Tecnológico de Roque. Carretera Celaya-Juventino Rosas km 8, Celaya, Guanajuato. CP. 38110

DOI:

https://doi.org/10.29312/remexca.v12i7.2243

Keywords:

cultivated, dendrogram, principal components, Salvia, wild chia

Abstract

It is an annual crop of temperate and semi-warm environments with clay and sandy soils. There are wild populations in Mexico that in pre-Columbian times allowed the selection of plants with larger fruit that did not disperse the seed. Domesticated varieties, compared to wild ones, have larger seeds, more compact inflorescence, closed calyces, longer flower, apical dominance, uniformity in flowering and ripening periods. Chia contains between 9 and 23% protein, 26-41% carbohydrates and 30 to 33% oil, 40% dietary fiber and calcium and a high antioxidant content. It has acquired great importance because it is considered a functional food. There is consensus on the importance of the study and conservation of plant genetic resources. The objective of this research was to characterize the morphological diversity of 31 chia genotypes based on the variations identified between wild and domesticated populations. It was observed that the presence of anthocyanins is characteristic of wild plants, as well as the presence of open calyx, which is related to the dispersal of the seeds; these were smaller and darker, and their calyces were short and opened when ripe. The size of the seed and the weight of a thousand seeds are highly correlated with the yield per plant. Domesticated plants presented closed calyx, without anthocyanin coloration, reduction of pubescence in most of the plant, larger inflorescence, greater number of florets, greater seed weight, higher yield. Domesticated, semi-domesticated and wild populations were characterized and grouped. The wild ones have an open calyx. The semi-domesticated ones are similar to the cultivated ones but have an open calyx. The domesticated ones had apical dominance, greater size of spike and closed calyx.

Downloads

Download data is not yet available.

References

Ayerza, R. and Coates, W. 2004. Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Tropical Sci. 44(3):131-135. https://doi.org/ 10.1002/ts.154.

Baginsky, C.; Arenas, J.; Escobar, H.; Garrido, M.; Valero, N.; Tello, D. and Silva, H. 2016. Growth and yield of chia (Salvia hispanica L.) in the mediterranean and desert climates of chile. Chil. J. Agric. Res. 76(3):255-264. https://doi.org/10.4067/S0718-58392016000 300001.

Cahill, J. P. 2004. Genetic diversity among varieties of chia (Salvia hispanica L.). Genetic resources and crop evolution. 51(7):773-781. https://doi.org/10.1023/B:GRES.00000 34583.20407.80.

Cahill, J. P. 2005. Human selection and domestication of chia (Salvia hispanica L.). J. Ethnobiol. 25(2):155-174. https://doi.org/10.2993/0278-0771.

Cahill, J. P. and Ehdaie, B. 2005. Variation and heritability of seed mass in chia (Salvia hispanica L.). Genetic resources and crop evolution. 52(2):201-207. https://doi.org/10.1007/s10722-003-5122-9.

Cahill, J. P. and Provance, M. C. 2002. Genetics of qualitative traits in domesticated chia (Salvia hispanica L.). J. Hered. 93(1):52-55. https://doi.org/10.1093/jhered/93.1.52.

Capitani, M. I.; Spotorno, V.; Nolasco, S. M. and Tomás, M. C. 2012. Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Sci. Technol. 45(1):94-102. https://doi.org/10.1016/j.lwt.2011. 07.012.

Cong, B.; Liu, J. and Tanksley, S. 2002. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proceedings of the national academy of Sciences of the United States of America. 99(21):13606-11. https://doi.org/10.1073/pnas. 172520999.

De-Souza, F. C.; De-Sousa, F.; Espirito, G.; Da-Silva, S. and Rosa, G. 2015. Effect of chia seed (Salvia hispanica L.) consumption on cardiovascular risk factors in humans: a systematic review. Nutrición Hospitalaria. 32(5):1909-1918. https://doi.org/10.3305/nh.2015. 32.5.9394 retrieved from http://www.redalyc.org/articulo.oa?id=85622739007%0ACómo.

Fernald, M. L. 1907. Diagnoses of new spermatophytes from Mexico. Proceedings of the American Academy of Arts and Sciences. American Academy of Arts and Sciences. https://doi.org/ http://www.jstor.org/stable/20022302. 43(2):(61-68).

Harlan, J. R. 1992. Grass evolution and domestication. In C. U. Press. (Ed.). Origins and processes of domestication. In: Chapma, G. P (Ed.). Cambridge University Press. 156-175 pp.

Hernández, G. A. y Miranda, C. S. 2008. Caracterización morfológica de chía (Salvia hispanica). Rev. Fitotec. Mex. 31(2):105-113. https://doi.org/0187-7380.

Loreto, M. A.; Cobos, A.; Diaz, O. and Aguilera, J. M. 2013. Chia Seed (Salvia hispanica L.): an ancient grain and a new functional food. Food Reviews Inter. 29(4):394-408. https://doi.org/10.1080/87559129.2013.818014.

Mao, L.; Begum, D.; Chuang, H. W.; Budiman, M. A.; Szymkowiak, E. J.; Irish, E. E. and Wing, R. A. 2000. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature. 406(6798):910-913. https://doi.org/10.1038/35022611.

Medina-Santos, L.C.; Covarrubias-Prieto, J.; Iturriaga, G.; Ramírez-Pimentel, J. G. y Raya-Pérez, J. C. 2019. Caracterización de colectas de chía de la región occidental de México. Rev. Mex. Cienc. Agríc. 10(8):1837-1848.

Oliveros, S. M. R. and Paredes, L. O. 2013. Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J. Agric. Food Chem. 61(1):193-201. https://doi.org/10.1021/ jf3034978.

Olivos-Lugo, B. L, Valdivia-López, M. Á. and Tecante, A. 2010. Thermal and physicochemical properties and nutritional value of the protein fraction of Mexican chia seed (Salvia hispanica L.). Food Sci. Technol. Inter. 16(1):89-96. https://doi.org/10.1177/10820 13209353087.

Rovati, A.; Escobar, E. y Prado, C. 2009. Metodología alternativa para evaluar la calidad de la semilla de chía (Salvia hispanica L.) en Tucumán, R. Argentina. EEAOC-Avance agroindustrial. 33(3):44-46.

Sosa, B. A.; Ruiz, I. G.; Miranda, C.; Gordillo, S.; Westh, H. and Mendoza, G. 2016 b. Agronomic and physiological parameters related to seed yield of white chia (Salvia hispanica L.). Acta Fitogenética. Sociedad Mexicana de Fitogénetica, AC. 3(1):31-37.

Ullah, R.; Nadeem, M. and Imran, M. 2017. Omega-3 fatty acids and oxidative stability of ice cream supplemented with olein fraction of chia (Salvia hispanica L.) oil. Lipids in health and disease, 16(1):1-8. https://doi.org/10.1186/s12944-017-0420-y.

XLSTAT. 2017. XLSTAT Software. Version. 5.02. Copyright addinsoft 1995-2017. http://www.xlstat.com. 2017.

Published

2021-11-04

How to Cite

Calderón-Ruíz, Alberto, Salvador Montes-Hernández, M. Antonio García-Perea, Jorge Covarrubias Prieto, Cesar L. Aguirre-Mancilla, and Juan Carlos Raya Pérez. 2021. “Characterization of Wild and Cultivated Chia Populations”. Revista Mexicana De Ciencias Agrícolas 12 (7). México, ME:1161-70. https://doi.org/10.29312/remexca.v12i7.2243.

Issue

Section

Articles

Most read articles by the same author(s)