In vitro propagation of apple tree from mature zygotic embryos

Authors

  • Juan Pablo Cabral-Miramontes Institutional Master’s Degree in Agricultural and Forestry Sciences-Juarez University of the State of Durango. Durango, México
  • Jorge Armando Chávez Simental Institute of Forestry and Wood Industry-Juarez University of the State of Durango. Durango, México
  • Cecilia Pulido-Díaz Institute of Forestry and Wood Industry-Juarez University of the State of Durango. Durango, México
  • Manuel González-Portillo Faculty of Chemical Sciences-Juarez University of the State of Durango. Durango, México
  • José Rodolfo Goche-Télles Faculty of Forest Sciences-Juarez University of the State of Durango. Durango, México

DOI:

https://doi.org/10.29312/remexca.v13i4.2164

Keywords:

culture of plant tissues, micropropagation of fruit trees, vitroplants

Abstract

The municipality of Nuevo Ideal is one of the most important regions for apple production in the state of Durango, Mexico. There are scattered Malus domestica trees from extinct orchards that were part of a production system and that today are abandoned without agronomic management, but that have shown an efficient adaptability to the conditions and continue to produce good quality fruit. The objective of this study was to develop an in vitro propagation protocol of M. domestica using seeds of feral trees from this region. Germination and production of adventitious shoots were evaluated using Murashige & Skoog (MS) medium and woody plant medium (WPM) supplemented with phytohormones 6-Benzylaminopurine (BAP) and indole butyric acid (IBA) at different doses. For rooting, indole acetic acid (IAA), naphthaleneacetic acid (NAA) and kinetin (KIN) were also used in combination with the previous ones. Germination and shoot formation obtained better results with the concentration of 0.5 mg L-1 of BAP in MS medium at 60 days. In the leaf development, the treatment with 1.5 mg L-1 of BAP in MS medium stood out, with 21.07 leaves on average. The plants of all the treatments had roots, however, the best development was shown by the treatment with 1.5 mg L-1 of NAA and 0.15 mg L-1 of BAP in WPM medium. Through the protocol generated in this research, it is possible to massively propagate the M. domestica species for purposes of germplasm conservation and subsequent exploitation of the crop.

Downloads

Download data is not yet available.

References

Amiri, E. M.; Elahinia, A. 2011. Optimization of medium composition for apple rootstocks. Afr. J. Biotech. 10(18):3594-3601. https://doi.org/10.5897/AJB10.1945.

Azofeifa, A. 2009. Problemas de oxidación y oscurecimiento de explantes cultivados in vitro. Agron. Mesoam. 20(1):153-175. DOI: https://doi.org/10.15517/am.v20i1.4990

Chaturvedi, H. C.; Sharma, P. L. K.; Agha, B. Q. and Sharma, M. 2004. Production of cloned trees of Populus deltoides through in vitro regeneration from leaf stern and root explants and their field cultivation. Indian. J. Biotechnol. 3(2):203-208.

Da Câmara M, L.; Da Câmara M., A.; Hanzer, V.; Kalthoff, B.; Weiss, H.; Mattanovich, D.; Regner, F. and Katinger, H. 1991. A new, efficient method using 8 - hydroxyl - quinolinol-sulfate for the initiation and establishment of tissue cultures of apple from adult material. Plant Cell Tissue Organ Cult. 27(2):155-160. DOI: https://doi.org/10.1007/BF00041284

Dalal, A.; Das, B.; Sharma, K.; Mir, A. and Sounduri, S. 2006. In vitro cloning of apple (Malus domestica Borkh) employing forced shoot tip cultures on M9 rootstock. Indian. J. Biotechnol. 5(4):543-550.

Dobránszki, J. and Teixeira Da Silva, J. A. 2010. Micropropagation of apple a review. Biotechnol. Adv. 28(4):462-488. https://doi.org/10.1016/j.biote chadv.2010.02.008. DOI: https://doi.org/10.1016/j.biotechadv.2010.02.008

Druart, P. 1997. Optimization of culture media for in vitro rooting of Malus domestica Borkh. cv. Compact Spartan. Biologia Plantarum. 39(1):67-77. DOI: https://doi.org/10.1023/A:1000309023415

Gaudie, D. 2011. Micropropagation of two apple (Malus domestica Borkh) varieties from shoot tip explant. Addis Ababa University. College of Natural Sciences. School of Graguate Studies. Biotechnology Program. Ethiopia. 50 p.

González, C. G.; Villanueva, D. J.; Orona, C. I. y Sánchez, C. I. 2005. Efecto de la lámina de riego en el crecimiento radial de nogal pecanero (Carya illinoensis Koch) mediante análisis de imágenes. Agrofaz. 5(2):863-868.

Hartmann, H.; Kaster, D.; Davies, F. and Geneve, R. 2004. Plant propagation: principles and practices. 6th (Ed). Prentice Hall of India Private Limited, New Delhi, India. 770 p.

Hoyos, J.; Perea, C. and Velasco, R. 2008. Evaluation of the effect of different concentrations of phytohormones in micropropagation of dominico hartón plantain (Musa AAB Simmonds). Facultad de Ciencias Agropecuarias. 6(2):99-104.

Kepenek, K. and Karoǧlu, Z. 2011. The effects of paclobutrazol and daminozide on in vitro micropropagation of some apple (Malus domestica) cultivars and M9-rootstock. Afr. J. Biotechnol. 10(24):4851-4859. https://doi.org/10.5897/AJB10.1456.

Keresa, S.; Mihovilovic, A.; Baric, M.; Habus Jercic, I.; Sarcevic, H. and Bisko, A. 2012. Efficient axillary shoot proliferation and in vitro rooting of apple cv. ’Topaz’. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 40(1):113-118. https://doi.org/10.15835/nbha4017211. DOI: https://doi.org/10.15835/nbha4017211

Levitus, G.; Echenique, V.; Rubinstein, C.; Hopp, E. y Mroginski, L. 2010. Biotecnología y mejoramiento vegetal II. 2ª Edición. Editorial INTA. Instituto Nacional de Tecnología Agropecuaria. Consejo argentino para la información y el desarrollo de la biotecnología. 26-33 pp.

Mc Cown, B. and Lloyd, G. 1981. Woody plant medium (WPM) a revised mineral formulation for micro-culture of woody plant species. HortScience. 16:453.

Mehta, M.; Ram, R. and Bhattacharya, A. 2014. A simple and cost-effective liquid culture system for the micropropagation of two commercially important apple rootstocks. Indian J. Exp. Biol. 52(7):748-754.

Modgil, M.; Parmar, S. and Negi, N. P. 2017. RAPD analysis of long term micropropagated rootstock plants of apple Malling 7. Indian J. Exp. Biol. 55(3):178-183.

Modgil, M. and Thakur, M. 2017. In vitro culture of clonal rootstocks of apple for their commercial exploitation. Acta Hortic. 1155:331-335. https://doi.org/10.17660/ActaH ortic.2017. 1155.48. DOI: https://doi.org/10.17660/ActaHortic.2017.1155.48

Montes-Salazar, A. M.; Sepúlveda-Jiménez, G.; Evangelista-Lozano, S. y Rodríguez-Monroy, M. 2016. Estudio preliminar para la propagación in vitro de Cedrus atlantica por yemas axilares. Rev. Mex. Cienc. Agríc. 7(8):2071-2078. DOI: https://doi.org/10.29312/remexca.v7i8.140

Murashige, T. and Skoog, F. 1962. A revised medium for growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15(3):473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Murashige, T. 1974. Plant propagation through tissue culture, Ann. Rev. Plant Physiol. 25(1):135-160. DOI: https://doi.org/10.1146/annurev.pp.25.060174.001031

FAO. 2014. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Base de datos FAOSTAT. http://www.fao.org/faostat/es/.

Pancaningtyas, S. 2015. Study on the presence and influence of phenolic compounds in callogenesis and somatic embryo development of cocoa (Theobroma cacao L.). Pelita Perkebunan. 31(1):14-20. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v31i1.81.

Rustaei, M.; Nazeri, S.; Ghadimzadeh, M. and Hemmaty, S. 2009. Effect of phloroglucinol, medium type and some component on in vitro proliferation of dwarf rootstock of apple (Malus domestica). Inter. J. Agric. Biol. 11(2):193-196.

SIAP. 2019. Servicio de Información Agroalimentaria y Pesquera. http://infosiap.siap.gob.mx: 8080/agricola-siap-gobmx/AvanceNacionalSinPrograma.do.

Soni, M.; Thakur, M. and Modgil, M. 2011. In vitro multiplication of Merton I. 793-an apple rootstock suitable for replantation. Indian J. Biotechnol. 10(3):362-368.

Tandon, B.; Anand, U.; Alex, B. K.; Kaur, P.; Nandy, S.; Shekhawat, M. S.; Sanyal, R.; Pandey, D. K.; Koshy, E. P. and Dey, A. 2021. Statistical optimization of in vitro callus induction of wild and cultivated varieties of Mucuna pruriens L. (DC.) using response surface methodology and assessment of L-Dopa biosynthesis. Industrial Crops and Products. 169(1):113626. https://doi.org/10.1016/j.indcrop.2021.113626.

Teixeira da Silva, J. A.; Gulyás, A.; Magyar-Tábori, K.; Min-Rui, W.; Qiao-Chun, W. and Dobránszki, J. 2019. In vitro culture of apple and other Malus species: recent advances and applications. Planta. 249(4):975-1006. https://doi.org/10.1007/s00425-019-03100-x.

Valladares, F. and Niinements, Ü. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics. 39(1):237-257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506. DOI: https://doi.org/10.1146/annurev.ecolsys.39.110707.173506

Vilchez, J.; Martínez, L.; Álvarez, C.; Albornoz, A.; Albany, N.; Molina, M. y García-Águila, L. 2014. Medio de cultivo y reguladores de crecimiento en la multiplicación in vitro Psidium guajava L. Biotecnología Vegetal. 14(1):15-20.

Zhao, X.; Cheng, Z. and Zhang, X. 2008. Cell fate switch during in vitro plant organogenesis. J. Integ. Plant Biol. 50(7):816-824. https://doi.org/10.1111/j.1744-7909.2008.00701.x. DOI: https://doi.org/10.1111/j.1744-7909.2008.00701.x

Published

2022-06-21

How to Cite

Cabral-Miramontes, Juan Pablo, Jorge Armando Chávez Simental, Cecilia Pulido-Díaz, Manuel González-Portillo, and José Rodolfo Goche-Télles. 2022. “In Vitro Propagation of Apple Tree from Mature Zygotic Embryos”. Revista Mexicana De Ciencias Agrícolas 13 (4). México, ME:603-16. https://doi.org/10.29312/remexca.v13i4.2164.

Issue

Section

Articles