Membranas biobasadas y nanocompuestos: innovación sostenible para su potencial uso en aguas residuales

Autores/as

  • Samuel Awobifa-Olaolu Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza Ing. José Cárdenas Valdés S/N, República Oriente, Saltillo, Coahuila, México. CP. 25280.
  • Adolfo Romero-Galarza Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza Ing. José Cárdenas Valdés S/N, República Oriente, Saltillo, Coahuila, México. CP. 25280.
  • Rosa Idalia Narro-Céspedes Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza Ing. José Cárdenas Valdés S/N, República Oriente, Saltillo, Coahuila, México. CP. 25280.
  • S. Alejandro Lozano-Morales SECIHTI-Centro de Investigación en Química Aplicada. Blvd. Enrique Reyna Hermosillo #140, Col. San José de los Cerritos, Saltillo, Coahuila, México. CP. 25294
  • Corazón Giovanna Morales-Amaya Centro de Investigación en Química Aplicada. Blvd. Enrique Reyna Hermosillo # 140, Col. San José de los Cerritos, Saltillo, Coahuila, México. CP. 25294
  • Francisco J. González Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza Ing. José Cárdenas Valdés S/N, República Oriente, Saltillo, Coahuila, México. CP. 25280

DOI:

https://doi.org/10.29312/remexca.v16i30.4052

Palabras clave:

fotodegradación, polímeros biodegradables, remoción de colorantes

Resumen

Actualmente la contaminación generada por la industria textil en el área de colorantes es una gran preocupación a nivel nacional e internacional. Una de las propuestas para mitigar esta problemática son la tecnología de membranas. En particular, las basadas en materiales compuestos y polímeros de naturaleza biodegradable han sido sujeto de estudio en las últimas décadas como reemplazo a las membranas a base de polímeros convencionales para tratamiento de aguas, esto debido a la creciente demanda de tecnologías sostenibles para dicha aplicación. Este trabajo aborda la preparación y el uso de nanocompuestos poliméricos empleando el ácido poliláctico y nanopartículas de dióxido de titanio (TiO2) para su aplicación como membranas biodegradables. La adición de estas nanopartículas en la matriz del polímero mejora la estabilidad térmica y dota de propiedades fotocatalíticas, permitiendo la remoción de colorantes con potencial aplicación para el tratamiento de aguas residuales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Blanchard, R. and Mekonnen, T. H. 2022. Synchronous pyrolysis and activation of poly (ethylene terephthalate) for the generation of activated carbon for dye contaminated wastewater treatment. Journal of Environmental Chemical Engineering. 10(6):108810. https://doi.org/10.1016/j.jece.2022.108810.

Carmona, V. B.; Corrêa, A. C.; Marconcini, J. M. and Mattoso, L. H. C. 2015. Properties of a biodegradable ternary blend of thermoplastic starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). Journal of Polymers and the Environment. 23(1):83-89. https://doi.org/10.1007/s10924-014-0666-7.

Deepalekshm, P.; Yara, E.; Sabari, N. and Mohammad, H. 2021. Core-Shell nanofibers of polyvinyl alcohol/polylactic acidcontaining TiO2 nanotubes for natural sunlight drivenphotocatalysis. Macromolecular Materials and Engineering. 307(2):2100482. https://doi.org/10.1002/mame.202100482.

Furukawa, T.; Sato, H.; Murakami, R.; Zhang, J.; Duan, Y. X.; Noda, I.; Ochiai, S. and Ozaki, Y. 2005. Structure, Dispersibility, and crystallinity of poly(hydroxybutyrate)/poly( L -lactic acid) blends studied by ft-ir microspectroscopy and differential scanning calorimetry. Macromolecules. 38(15):6445-6454. https://doi.org/10.1021/ma0504668

George, J.; Jha, S. K.; Chakrabarty, D.; Chakraborty, A. and Vaidyanathan, V. K. 2024. Superior performance of titanium coated magnetic mesoporous silica nanocomposite based poly(lactic acid) membranes for the separation of chlorophenolic organic contaminants. Journal of Polymers and the Environment. 32(5):2325-2335. https://doi.org/10.1007/s10924-023-03098-0.

González, E. A. S.; Olmos, D.; Lorente, M. Á.; Vélaz, I. and González-Benito, J. 2018. Preparation and characterization of polymer composite materials based on pla/tio2 for antibacterial packaging. Polymers. 10(12):1365. https://doi.org/10.3390/polym10121365.

Hickman, R.; Walker, E. and Chowdhury, S. 2018. TiO 2 -PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants. Journal of Water Process Engineering. 24:74-82. https://doi.org/10.1016/j.jwpe.2018.05.015.

Hou, X.; Cai, Y.; Mushtaq, M.; Song, X.; Yang, Q.; Huang, F. and Wei, Q. 2018. Deposition of TiO2 nanoparticles on porous polylactic acid fibrous substrates and its photocatalytic capability. Journal of Nanoscience and Nanotechnology. 18(8):5617-5623. https://doi.org/10.1166/jnn.2018.15426.

Inai, R.; Kotaki, M. and Ramakrishna, S. 2005. Structure and properties of electrospun PLLA single nanofibres. Nanotechnology. 16(2):208-213. https://doi.org/10.1088/0957-4484/16/2/005.

Jamee, R. and Siddique, R. 2019. Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach. European Journal of Microbiology and Immunology. 9(4):114-118. https://doi.org/10.1556/1886.2019.00018.

Jem, K. J. and Tan, B. 2020. The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research. 3(2):60-70. https://doi.org/10.1016/j.aiepr.2020.01.002.

Karki, S.; Hazarika, G.; Yadav, D. and Ingole, P. G. 2024. Polymeric membranes for industrial applications: recent progress, challenges and perspectives. Desalination. 573:117200. https://doi.org/10.1016/j.desal.2023.117200.

Kim, A.; Hak-Kim, J. and Patel, R. 2022. Modification strategies of membranes with enhanced anti-biofouling properties for wastewater treatment: a review. Bioresource Technology. 345:126501. https://doi.org/10.1016/j.biortech.2021.126501.

Kumar, V.; Thakur, C. and Chaudhari, P. K. 2022. Anaerobic biological treatment of dye bearing water in anaerobic sequencing batch reactor: performance and kinetics studies. Journal of the Indian Chemical Society. 99(10):100673. https://doi.org/10.1016/j.jics.2022.100673.

Liu, M.; Cheng, Z.; Yan, J.; Qiang, L.; Ru, X.; Liu, F.; Ding, D. and Li, J. 2013. Preparation and characterization of TiO2 nanofibers via using polylactic acid as template. Journal of Applied Polymer Science. 128(2):1095-1100. https://doi.org/10.1002/app.38166.

Luo, T.; Farooq, A.; Weng, W.; Lu, S.; Luo, G.; Zhang, H.; Li, J.; Zhou, X.; Wu, X.; Huang, L.; Chen, L. and Wu, H. 2024. Progress in the preparation and application of breathable membranes. Polymers. 16(12):1686. https://doi.org/10.3390/polym16121686.

Mahmood, K.; Amara, U.; Siddique, S.; Usman, M.; Peng, Q.; Khalid, M.; Hussain, A.; Ajmal, M.; Ahmad, A.; Sumrra, S. H.; Liu, Z.-P.; Khan, W. S.; and Ashiq, M. N. 2022. Green synthesis of Ag@CdO nanocomposite and their application towards brilliant green dye degradation from wastewater. Journal of Nanostructure in Chemistry. 12(3):329-341. https://doi.org/10.1007/s40097-021-00418-5.

Mansoori, S.; Davarnejad, R.; Matsuura, T. and Ismail, A. F. 2020. Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polymer Testing. 84:106381. https://doi.org/10.1016/j.polymertesting.2020.106381.

Mhlanga, N. and Ray, S. S. 2014. Characterisation and thermal properties of titanium dioxide nanoparticles-containing biodegradable polylactide composites synthesized by Sol-Gel Method. Journal of Nanoscience and Nanotechnology. 14(6):4269-4277. https://doi.org/10.1166/jnn.2014.8271.

Mohammad, N. and Atassi, Y. 2021. TiO2/PLLA Electrospun nanofibers membranes for efficient removal of methylene blue using sunlight. Journal of Polymers and the Environment. 29(2):509-519. https://doi.org/10.1007/s10924-020-01895-5.

Mojiri, A.; Zhou, J. L.; Karimi-Dermani, B.; Razmi, E. and Kasmuri, N. 2023. Anaerobic membrane bioreactor (anmbr) for the removal of dyes from water and wastewater: progress, challenges, and future perspectives. Processes. 11(3):855. https://doi.org/10.3390/pr11030855.

Ren, G.; Wan, K.; Kong, H.; Guo, L.; Wang, Y.; Liu, X. and Wei, G. 2023. Recent advance in biomass membranes: fabrication, functional regulation, and antimicrobial applications. Carbohydrate Polymers. 305:120537. https://doi.org/10.1016/j.carbpol.2023.120537.

Romero-Galarza, A.; Dahlberg, K. A.; Chen, X. and Schwank, J. W. 2014. Crystalline structure refinements and properties of Ni/TiO2 and Ni/TiO2-Ce catalysts and application to catalytic reaction of “CO+NO”. Applied catalysis a: general. 478:21-29. https://doi.org/10.1016/j.apcata.2014.03.029.

Salahuddin, N.; Abdelwahab, M.; Gaber, M. and Elneanaey, S. 2020. Synthesis and design of norfloxacin drug delivery system based on PLA/TiO2 nanocomposites: antibacterial and antitumor activities. Materials Science and Engineering. 108:110337. https://doi.org/10.1016/j.msec.2019.110337.

Sarasua, J. R.; Prud’homme, R. E.; Wisniewski, M.; Borgne, A. and Spassky, N. 1998. Crystallization and melting behavior of polylactides. Macromolecules. 31(12):3895-3905. https://doi.org/10.1021/ma971545p.

Taib, N. A. A. B.; Rahman, M. R.; Huda, D.; Kuok, K. K.; Hamdan, S.; Bakri, M. K. B.; Julaihi, M. R. M. B. and Khan, A. 2023. A review on poly lactic acid (pla) as a biodegradable polymer. Polymer Bulletin. 80(2):1179-1213. https://doi.org/10.1007/s00289-022-04160-y.

Teamsinsungvon, A.; Ruksakulpiwat, C. and Ruksakulpiwat, Y. 2022. Effects of titanium-silica oxide on degradation behavior and antimicrobial activity of poly (lactic acid) composites. Polymers. 14(16):3310. https://doi.org/10.3390/polym14163310.

Thiam, B. G.; Magri, A. E.; Vanaei, H. R. and Vaudreuil, S. 2022. 3D printed and conventional membranes a review. Polymers. 14(5):1023. https://doi.org/10.3390/polym14051023.

Thomas, M. S.; Pillai, P. K. S.; Faria, M.; Cordeiro, N.; Kailas, L.; Kalarikkal, N.; Thomas, S. and Pothen, L. A. 2020. Polylactic acid/nano chitosan composite fibers and their morphological, physical characterization for the removal of cadmium(II) from water. Journal of Applied Polymer Science. 137(34):48993. https://doi.org/10.1002/app.48993.

Wang, W. W.; Man, C. Z.; Zhang, C. M.; Jiang, L.; Dan, Y. and Nguyen, T. P. 2013. Stability of poly(l-lactide)/TiO2 nanocomposite thin films under UV irradiation at 254 nm. Polymer Degradation and Stability. 98(4):885-893. https://doi.org/10.1016/j.polymdegradstab.2013.01.003.

Wang, Y. and Wei, G. 2024. Recent trends in polymer membranes: fabrication technique, characterization, functionalization, and applications in environmental science (Part I). Polymers. 16(20):2889-. https://doi.org/10.3390/polym16202889.

Yuanfeng, P.; Farmahini-Farahani M.; O’Hearn, P.; Xiao, H. and Ocampo, H. 2016. An overview of bio based polymers for packaging materials. Journal of Bioresources and Bioproducts. 1(3):106-113. https://doi.org/10.21967/jbb.v1i3.49.

Zhang, H.; Li, H.; Gao, D. and Yu, H. 2022. Source identification of surface water pollution using multivariate statistics combined with physicochemical and socioeconomic parameters. Science of the Total Environment. 806:151274. https://doi.org/10.1016/j.scitotenv.2021.151274.

Zhang, S.; Shen, L.; Deng, H.; Liu, Q.; You, X.; Yuan, J.; Jiang, Z.; and Zhang, S. 2022. Ultrathin membranes for separations: a new era driven by advanced nanotechnology. Advanced Materials. 34(21):2108457. https://doi.org/10.1002/adma.202108457.

Publicado

2025-10-17

Cómo citar

Awobifa-Olaolu, Samuel, Adolfo Romero-Galarza, Rosa Idalia Narro-Céspedes, S. Alejandro Lozano-Morales, Corazón Giovanna Morales-Amaya, y Francisco J. González. 2025. «Membranas Biobasadas Y Nanocompuestos: Innovación Sostenible Para Su Potencial Uso En Aguas Residuales». Revista Mexicana De Ciencias Agrícolas 16 (30). México, ME:e4052. https://doi.org/10.29312/remexca.v16i30.4052.

Número

Sección

Artículos