Control biológico de marchitez vascular mediante Trichoderma spp., para el cultivo de cacahuate
DOI:
https://doi.org/10.29312/remexca.v16i5.3787Palabras clave:
Trichoderma spp, actividad antifúngica, necrosis basalResumen
En México, el cultivo de cacahuate es una actividad productiva en zonas rurales, no obstante, está amenazado por enfermedades fúngicas, como la marchitez vascular, causada por Fusarium incarnatum, reportada recientemente en el país. El estudio evaluó la capacidad antagonista de cinco especies de Trichoderma contra la cepa ‘MA-PET-03’ de F. incarnatum en el cultivo de cacahuate en Buenavista de Benito Juárez, Chietla, Puebla. Se destacó que T. koningiopsis presentó la mayor tasa de crecimiento y el mayor porcentaje de inhibición del crecimiento radial (PIGR) de F. incarnatum en pruebas in vitro. En condiciones de campo, los tratamientos con Trichoderma spp., presentaron más vainas de cacahuate por planta y menor incidencia de la enfermedad, mejorando el rendimiento del cultivo. Estos resultados confirman la efectividad de Trichoderma spp., para el manejo de la marchitez vascular en la región.
Descargas
Citas
Abdullah, N. S.; Doni, F.; Mispan, M. S.; Saiman, M. Z.; Yusuf, Y. M.; Oke, M. A. and Suhaimi, N. S. M. 2021. Harnessing Trichoderma in agriculture for productivity and sustainability. Agronomy. 11(12):2559-2576. https://doi.org/10.3390/agronomy11122559.
Akram, N. A.; Shafiq, F. and Ashraf, M. 2018. Peanut (Arachis hypogaea L.): a prospective legume crop to offer multiple health benefits under changing climate. Compr. Rev. Food Sci. Food Saf. 17(5):1325-1338. https://doi.org/10.1111/1541-4337.12383.
Andrade-Hoyos, P.; Luna-Cruz, L.; Osorio-Hernández, E.; Molina-Gayosso, E.; Landero-Valenzuela, N. y Barrales-Cureño, H. J. 2019. Antagonismo de Trichoderma spp. vs. hongos asociados a la marchitez de chile. Revista Mexicana de Ciencias Agrícolas. 10(6):1259-1272. https://doi.org/10.29312/remexca.v10i6.1326.
Andrade-Hoyos, P.; Rivera-Jiménez, M. N.; Landero-Valenzuela, N.; Silva-Rojas, H. V.; Martínez-Salgado, S. J. y Romero-Arenas, O. 2023. Beneficios ecológicos y biológicos del hongo cosmopolita Trichoderma spp. en la agricultura: una perspectiva en el campo mexicano. Revista Argentina de Microbiología. 55(4):366-377. https://doi.org/10.1016/j.ram.2023.06.005.
Asad, S. A. 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases a review. Ecol. Complex. 49(1)e100978. https://doi.org/10.1016/j.ecocom.2021.100978.
Bell, D. K.; Pozos, H. D. and Markham, C. R. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology. 72(4):379-382. https://doi.org/10.1094/PHYTO-72-379.
Blanco, M. M.; Castro, Z. O. y Umaña, R. G. 2022. Estudio preliminar de especies de Fusarium presentes en piña (Ananas comosus) en Costa Rica. Agron. Costarricense. 46(1):47-64. https://doi.org/10.15517/rac.v46i1.49867.
Bokade, P.; Purohit, H. J. and Bajaj, A. 2021. Myco-remediation of chlorinated pesticides: insights into fungal metabolic system. Indian J. Microbiol. 61(3):237-249. https://doi.org/10.1007/s12088-021-00940-8.
Bokhari, N. A. and Perveen, K. 2012. Antagonistic action of Trichoderma harzianum and Trichoderma viride against Fusarium solani that causes tomato root rot. África. J. Microbiol. Res. 6(44):7193-7197. https://doi.org/10.5897/AJMR12.956.
Desmae, H.; Janila, P.; Okori, P.; Pandey, M. K; Motagi, B. N.; Monyo, E.; Mponda, O.; Okello, D.; Sako, D.; Echeckwu, C.; Oteng-Frimpong, R.; Miningou, A.; Ojiewo, C. and Varshney, R. K. 2018. Genetics, genomics and breeding of ground nuts (Arachis hypogea L.). Plant Breed. 138(4):425-444. https://doi.org/10.1111/pbr.12645.
Diabankana, R. G. C.; Frolov, M.; Islamov, B.; Shulga, E.; Filimonova, M. N.; Afordoanyi, D. M. and Validov, S. 2024. Identification and aggressiveness of Fusarium species associated with onion bulb (Allium cepa L.) during storage. J. Fungi. 10(2):161-179. https://doi.org/10.3390/jof10020161.
Dubey, S. C.; Tripathi, A.; Dureja, P. and Grover, A. 2011. Characterization of secondary metabolites and enzymes produced by Trichoderma species and their efficacy against plant pathogenic fungi. Indian J. Agric. Sci. 81(5):455-461.
FAO. 2023. Food and Agriculture Organization of the United Nations. Available online. https://www.fao.org/faostat/en/#data/QCL.
Husseina, N. A.; Al-Janabib, H. J.; Al-Mashhadyc, F. R.; Al-Janabia, J. K. A. and Al-Shujairia, A. R. S. 2022. Antagonistic activities of bioagent fungi Trichoderma harzianum and Pleurotus ostreatus against three species of Fusarium in cucumber plants. Asia Pac. J. Mol. Biol. Biotechnol. 30(1):12-21. https://doi.org/10.35118/apjmbb.030.1.02.
Illa, C.; Andres-Perez, A.; Matias, T. y Perez, M. A. 2019. Efecto de biocontrol y promoción del crecimiento en maní por Trichoderma harzianum y Bacillus subtilis en condiciones controladas y de campo. Revista Mexicana de Fitopatología. 38(1):119-131. https://doi.org/10.18781/r.mex.fit.1910-6.
Intana, W.; Kheawleng, S. and Sunpapao, A. 2021. Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (Cucumis melo) caused by Fusarium incarnatum. J. Fungi. 7(1):e46. https://doi.org/10.3390/jof7010046.
Kong, W. L.; Ni, H.; Wang, W. Y. and Wu, X. Q. 2022. Antifungal effects of volatile organic compounds produced by Trichoderma koningiopsis T2 against Verticillium dahliae. Front. Microbiol. 21(13):e1013468. https://doi.org/10.3389/fmicb.2022.1013468.
Mannai, S.; Jabnoun-Khiareddine, H.; Nasraoui, B. and Daami-Remadi, M. 2018. Rhizoctonia root rot of pepper (Capsicum annum): comparative pathogenicity of causal agent and biocontrol attempt using fungal and bacterial agents. J. Plant Pathol. Microbiol. 9(2):431-439. https://doi.org/10.4172/2157-7471.1000431.
Montero-Torres, J. 2020. Importancia nutricional y económica del Cacahuate (Arachis hypogaea L.). Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales. 7(2):112-125.
Nawrocka, J.; Gromek, A. and Małolepsza, U. 2019. Nitric oxide as a beneficial signaling molecule in Trichoderma atroviride TRS25-induced systemic defense responses of cucumber plants against Rhizoctonia solani. Front. Plant Sci. 10(10):421-436. https://doi.org/10.3389/fpls.2019.00421.
Romero-Arenas, O.; Andrade-Hoyos, P.; Silva-Rojas, H. V.; Luna-Cruz, A. and Martínez-Salgado, S. J. 2024. First report vascular wilt on peanut in Mexico caused by Fusarium incarnatum. Plant Dis. 108(1):e208. https://doi.org/10.1094/PDIS-05-23-0877-PDN.
SIAP. 2024. Servicio de Información Agroalimentaria y Pesquera. https://www.gob.mx/siap.
Stehlik-B. K. and Babinec, A. J. 2017. Data analysis with IBM SPSS statistics. Packt Publishing Ltd. 446 p.
Thirumalaisamy, P. P.; Dutta, R.; Jadon, K. S.; Nataraja, M. V.; Padvi, R. D.; Rajyaguru, R. and Yusufzai, S. 2019. Association and characterization of the Fusarium incarnatum-F. equiseti species complex with leaf blight and wilt of peanut in India. J. Gen. Plant Pathol. 85(2):83-89. https://doi.org/10.1007/s10327-018-0827-y.
Tralamazza, S. M.; Piacentini, K. C.; Savi, G. D.; Carnielli, Q. L.; De Carvalho-Fontes, L.; Martins, C. S.; Corrêa, B. and Rocha, L. O. 2021. Wild rice (O. latifolia) from natural ecosystems in the Pantanal region of Brazil: host to Fusarium incarnatum-equiseti species complex and highly contaminated by zearalenone. Int. J. Food Microbiol. 345(4):109-127. https://doi.org/10.1016/j.ijfoodmicro.2021.109127.
Wang, M. M.; Chen, Q.; Diao, Y. Z.; Duan, W. J. and Cai, L. 2019. Fusarium incarnatum-equiseti complex from China. Persoonia. 43(3):70-89. https://doi.org/10.3767/persoonia.2019.43.03.
Wonglom, P. and Sunpapao, A. 2020. Fusarium incarnatum is associated with postharvest fruit rot of muskmelon (Cucumis melo). J. Phytopathol. 168(1):204-210. https://doi.org/10.1111/jph.12882.
Zamurrad, M.; Tariq, M.; Shah, F. H.; Subhani, A.; Ijaz, M.; Iqbal, M. S. and Koukab, M. 2013. Performance based evaluation of groundnut genotypes under Chakwal medium rainfall conditions. J. Agricole. 1(1):9-12.

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Mexicana de Ciencias Agrícolas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.