Rendimiento y calidad de siete variedades de caña de azúcar en El Mante, Tamaulipas

Autores/as

  • José Reyes-Hernández Unidad Académica Multidisciplinaria Mante-Universidad Autónoma de Tamaulipas. Boulevard Enrique Cárdenas González núm. 1201, Col. Jardín, Ciudad El Mante, Tamaulipas, México. CP. 89840. Tel. 831 2320544
  • Rodolfo Torres-de los Santos Unidad Académica Multidisciplinaria Mante-Universidad Autónoma de Tamaulipas. Boulevard Enrique Cárdenas González núm. 1201, Col. Jardín, Ciudad El Mante, Tamaulipas, México. CP. 89840. Tel. 831 2320544
  • Hermelindo Hernández-Torres Unidad Académica Multidisciplinaria Mante-Universidad Autónoma de Tamaulipas. Boulevard Enrique Cárdenas González núm. 1201, Col. Jardín, Ciudad El Mante, Tamaulipas, México. CP. 89840. Tel. 831 2320544
  • Verónica Hernández-Robledo Unidad Académica Multidisciplinaria Mante-Universidad Autónoma de Tamaulipas. Boulevard Enrique Cárdenas González núm. 1201, Col. Jardín, Ciudad El Mante, Tamaulipas, México. CP. 89840. Tel. 831 2320544
  • Edwin Alvarado-Ramírez Unidad Académica Multidisciplinaria Mante-Universidad Autónoma de Tamaulipas. Boulevard Enrique Cárdenas González núm. 1201, Col. Jardín, Ciudad El Mante, Tamaulipas, México. CP. 89840. Tel. 831 2320544
  • Santiago Joaquín-Cancino Facultad de Ingeniería y Ciencias-Universidad Autónoma de Tamaulipas. Centro Universitario campus Victoria, edificio Centro de Gestión del Conocimiento, 4° Piso, Ciudad Victoria, Tamaulipas, México. CP. 87120. Tel. 834 3181721

DOI:

https://doi.org/10.29312/remexca.v13i5.3232

Palabras clave:

Saccharum officinarum L., Brix, sacarosa, tallos procesables

Resumen

Se evaluó el rendimiento agroindustrial y la calidad de jugo de siete variedades (IMMEX 91-589, XMEX 91-917, IMMEX 95-25, MEX 95-59, ATEMEX 96-40, MEX 96-60 e IMMEX 98-13) de caña de azúcar (Saccharum officinarum L.), más la CP 72-2086 como testigo, al inicio de la madurez. El experimento se realizó en El Mante, Tamaulipas, México, entre 2019 y 2020, bajo un diseño de bloques completos al azar, con cuatro repeticiones y considerando a las variedades como un tratamiento. Las variables fueron el rendimiento de tallos procesables (RTP) y de azúcar (RA), grados Brix (oBx), concentración de sacarosa (S), pureza (P), azúcares reductores (Ar), humedad (H) y fibra (F). Se obtuvo que todas presentaron diferencias estadísticas significativas (p≤ 0.05) entre variedades, excepto H y F (p> 0.05). En RTP, aumentaron el rendimiento de entre 2.8 y 20% con respecto al testigo a excepción de la IMMEX 98-13 que disminuyó 9.5% y en RA todas resultaron iguales al testigo, excepto MEX 95-59 e IMMEX 98-13, las cuales dismunuyeron el rendimiento en 25.3 y 18.8%, respectivamente. En cuanto a Brix, S, P y Ar, todas las variedades obtuvieron valores similares a la CP 72-2086 y en algunos casos difirieron entre si. Los resultados indicaron que las variedades XMEX 91-917 e IMMEX 95-25 superaron en RTP a la variedad testigo, mientras que, en RA y calidad de jugo la igualaron, por lo que pueden ser una opción para diversificar las variedades en la región del estado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Begum, M. K.; Alam, M. R.; Islam, M. S. and Arefin, M. S. 2012. Effect of water stress on physiological characters and juice quality of sugarcane. India. Sugar Technology. 14(2):161-167. https://doi.org/10.1007/s12355-012-0140-6.

Cardozo, N. P. and Sentelhas, P. C. 2013. Climatic effects on sugarcane ripening under the influence of cultivars and crop age. Brasil. Scientia Agricola. 70(6):449-456. https://doi.org/10.1590/S0103-90162013000600011. Coale, F. J.; Sanchez, C. A.; Izuno, F. T. and Bottcher, A. B. 1993. Nutrient accumulation and removal by sugarcane grown on Everglades Histosols. Estados Unidos de América. Agron. J. 85(2):310-315. https://doi.org/10.2134/agronj1993.00021962008500020028x.

Córdova-Gamas, G.; Salgado-García, S.; Castelán-Estrada, M.; Palma-López, D. J.; García-Moya, E.; Lagunes-Espinoza, L. D. C. y Córdova-Sánchez, S. 2016. Opciones de fertilización para el cultivo de caña de azúcar (Saccharum spp.) en Tabasco, México. México. Agroproductividad. 9(3):27-34.

Da Silva, P. P.; Soares, L.; Da Costa, J. G.; Da Silva, L.; Farías, J. C.; Rebelo, E.; Messias, J.; De Souza, G. V.; Nascimentoe, V. X.; Todaroe, A. R.; Riffel, A.; Grossi-de-Saf, M. F.; Pereira, M. H.; Goulart, A. E. and Ramalho, C. E. 2012. Path analysis for selection of drought tolerant sugarcane genotypes through physiological components. Estados Unidos de América. Industrial Crops and Products. 37(1):11-19. https://doi.org/10.1016/j.indcrop.2011.11.015.

Figueiredo, R.; Araújo, P.; Llerena, J. P. P. and Mazzafera, P. 2019. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: a biotechnological perspective. China. Food and Energy Security. 8(3):1-24. https://doi.org/10.1002/fes3.163. García-Fernández, F. G.; Herrera, M. Á. y Muñoz, N. E. S. 2014. La agroindustria azucarera en El Mante, Tamaulipas. Estrategias para potenciar la cadena de valor. México. Rev. Mex. Agron. 35:922-933.

Gilbert, R. A.; Shine, J. M.; Miller, J. D.; Rice, R. W. and Rainbolt, C. R. 2006. The effect of genotype, environment and time of harvest on sugarcane yields in Florida, USA. China. Field Crops Res. 95(2-3):156-170. https://doi.org/10.1016/j.fcr.2005.02.006.

Glaz, B.; Shine, J. M.; Irey, M. S.; Perdomo, R.; Powell, G. and Comstock, J. C. 2011. Seasonal fiber content of three sugarcane cultivars in three crop cycles on sand and muck soils. USA. Agron. J. 103(1):211-220. https://doi.org/10.2134/ agronj2010.0353.

Gómez-Merino, F. C.; Trejo-Téllez, I.; Morales-Ramos, V.; Salazar-Ortiz, J.; Velasco-Velasco, J.; Sentíes-Herrera, H. E. y Ladewig, P. 2014. Necesidades de innovación en la producción de caña de azúcar. Agroproductividad. 7(2):22-26.

Gravois, K. 2020. Sugarcane variety performance. Pub. 3752:12. www.lsuagcenter.com/ articles/page1588964225077

Gravois, K. A. and Milligan, S. B. 1992. Genetic relationship between fiber and sugarcane yield components. Estados Unidos de América. Crop Sci. 32(1):62-67. https://doi.org/10.2135/cropsci1992.0011183X003200010014x. Inman-Bamber, N. G. and Smith, D. M. 2005. Water relations in sugarcane and response to water deficits. China. Fields Crops Res. 92(2-3):185-202. https://doi.org/10.1016/j.fcr.2005. 01.023.

Islam, M. S.; Pan, Y. B.; Lomax, L. and Grisham, M. P. 2021. Identification of quantitative trait loci (QTL) controlling fibre content of sugarcane (Saccharum hybrids spp.). Alemania. Plant Breed. 140(2):360-366. https://doi.org/10.1111/pbr.12912.

Jackson, P. A. 2005. Breeding for improved sugar content in sugarcane. China. Fields Crops Res. 92(2-3):277-290. https://doi.org/10.1016/j.fcr.2005.01.024.

Méndez-Adorno, J. M.; Salgado-García, S.; Lagunes-Espinoza, L. C.; Mendoza-Hernández, J. R. H.; Castelán-Estrada, M.; Córdova-Sánchez, S. e Hidalgo-Moreno, C. I. 2016. Relación entre parámetros fisiológicos en caña de azúcar (Saccharum spp.) bajo suspensión de riego previo a la cosecha. México. Agroproductividad. 9(3):15-21. Pérez, E. A.; López, I. G.; Salgado-Garcia, S.; Rivera, S. I. y Sánchez, S. C. 2019. Fertilization alternatives for sugarcane crop in Pujiltic Sugarcane Mill, Chiapas, México. India. Sugar Technology. 21(5):756-764. https://doi.org/10.1007/s12355-018-0692-1.

Salgado, S.; Núñez, R.; Peña, J. J.; Etchevers, J. D.; Palma, D. J. y Soto, R. M. 2003. Manejo de la fertilización en el rendimiento, calidad del jugo y actividad de invertasas en caña de azúcar. Venezuela. Interciencia. 28(10):576-580.

Salgado-García, S.; Castelán-Estrada, M.; Aranda-Ibañez, E. M.; Ortiz-Laurel, H.; Lagunes-Espinoza, L. C. y Córdoba-Sánchez, S. 2016. Calidad de jugos de caña de azúcar (Saccharum spp.) según el ciclo de cultivo en Chiapas, México. México. Agroproductividad. 9(7):23-28.

Sentíes-Herrera, H. E. y Gómez-Merino, F. C. 2014. Nuevas directrices en mejoramiento genético de caña de azúcar (Saccharum spp.). México. Agroproductividad. 7(2):9-15.

Singels, A.; Donaldson, R. A. and Smit, M. A. 2005. Improving biomass production and partitioning in sugarcane: theory and practice. China. Field Crops Res. 92(2):291-303. https://doi.org/10.1016/j.fcr.2005.01.022. Singels, A.; Van Den Berg, M.; Smit, M. A.; Jones, M. R. and Van Antwerpen, R. 2010. Modelling water uptake, growth and sucrose accumulation of sugarcane subjected to water stress. China. Field Crops Research. 117(1):59-69. https://doi.org/10.1016/j.fcr.2010. 02.003.

SAS. 2002. Statistical Analysis System. SAS User‘s Guide: Statistics (version 9.0). Cary, NC, USA: SAS Inst. Inc.

Suárez, J. H.; Menéndez, S. A.; González, M. A.; Delgado, M. I. y Gómez, P. J. R. 2018. Evaluación de genotipos de caña de azúcar en diferentes ambientes en el ingenio Ofelina, República de Panamá. Cuba. Centro Agrícola. 45(1):24-33.

Vargas, V.; Hernández, M. E.; Gutiérrez, L. J.; Plácido, J. M. y Jiménez, C. A. 2007. Clasificación climática del estado de Tamaulipas, México. México. Ciencia UAT. 2(2):15-19.

Vera-Espinosa, J. J.; Carrillo-Ávila, E.; Flores-Cáceres, S.; Arreola-Enríquez, J.; Osnaya-González, M. y Castillo-Aguilar, C. D. C. 2016. Evaluación agroindustrial de diez variedades de caña de azúcar (Saccharum spp.). México. Agroproductividad. 9(3):21-27. Waclawovsky, A. J.; Sato, P. M.; Lembke, C. G.; Moore, P. H. and Souza, G. M. 2010. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Reino Unido. Plant Biotechnol. J. 8(3):263-276. https://doi.org/10.1111/j.1467-7652.2009. 00491.x.

Publicado

2022-08-02

Cómo citar

Reyes-Hernández, José, Rodolfo Torres-de los Santos, Hermelindo Hernández-Torres, Verónica Hernández-Robledo, Edwin Alvarado-Ramírez, y Santiago Joaquín-Cancino. 2022. «Rendimiento Y Calidad De Siete Variedades De caña De Azúcar En El Mante, Tamaulipas». Revista Mexicana De Ciencias Agrícolas 13 (5). México, ME:883-92. https://doi.org/10.29312/remexca.v13i5.3232.

Número

Sección

Artículos