Organogénesis directa en piña criolla inducida por 6-bencilaminopurina
DOI:
https://doi.org/10.29312/remexca.v14i6.3159Palabras clave:
6-bencilaminopurina, meristemo, morfogénesis in vitroResumen
La producción de piña (Ananas comosus L.) por métodos convencionales está limitada principalmente por la falta de disponibilidad de retoños de alto rendimiento. Sin embargo, se ha demostrado que por medio de metodologías de propagación in vitro como la embriogénesis somática y organogénesis, es posible obtener plantas de alto rendimiento de una manera más eficiente y controlable. El objetivo de este estudio consistió en generar un protocolo eficiente de micropropagación de piña criolla (Ananas comosus L.) para la multiplicación y conservación in vitro de esta especie, el estudio se llevó a cabo en 2021. Se evaluó la respuesta morfogénica de la piña criolla a partir de diferentes explantes (meristemo apical y hoja), cultivados en medio de cultivo Murashige y Skoog (MS) suplementado con diversos reguladores de crecimiento: ácido naftalenacético (ANA) (0.5, 1 y 1.5 mg L-1), 6-bencilaminopurina (BAP) (1, 2 y 3 mg L-1) y ácido 2,4-diclorofenoxiacético (2,4-D) (1, 2 y 4.5 mg L-1), así como un tratamiento control libre de reguladores. Los resultados mostraron que de los explantes evaluados la mejor respuesta se observó en el meristemo apical, en el cuales se obtuvo la formación de brotes adventicios a los 60 días del tratamiento de inducción, cuando el medio de cultivo fue suplementado con BAP a una concentración de 2 mg L-1 obteniéndose ocho brotes/explante. El protocolo desarrollado es un estudio clave para la propagación masiva de piña criolla.
Descargas
Citas
Al-Saif, A. M.; Hossain, A. B. M. S. and Taha, R. M. 2011. Effects of benzylaminopurine and naphthalene acetic acid on proliferation and shoot growth of pineapple (Ananas comosus L. Merr) in vitro. Afr. J. Biotechnol. 10(27):5291-5295. DOI: https://doi.org/10.5897/AJB11.370
Amin, M. N.; Rahman, M. M.; Rahman, K. W.; Ahmed, R.; Hossain, M. S. and Ahmed, M. B. 2005. Large scale plant regeneration in vitro from leaf derived callus cultures of pineapple [Ananas comosus (L.) Merr. cv. Giant Kew]. International journal of botany, 1(2):128-132.
Atawia, A. A.; El-Latif, F. M.; El-Gioushy, S. F.; Sherif, S. S. and Kotb, O. M. 2016. Studies on micropropagation of pineapple (Ananas comosus L.). Middle East J. Agriculture. 5(2):224-232.
Ayenew, B.; Tadesse, T.; Gebremariam, E.; Mengesha, A. and Tefera, W. 2013. Efficient use of temporary immersion bioreactor (TIB) on pineapple (Ananas comosus L.) multiplication and rooting ability. J. Microbiol. Biotechnol. Food Scie. 2(4):2456-2465.
Badou, B. T.; Agbidinoukoun, A.; Cacaï, G. T.; Dossoukpèvi, R. C. and Ahanhanzo, C. 2018. Effects of system benzylaminopurine-adenine sulphate in combination with naphthalene acetic on in vitro regeneration and proliferation of pineapple (Ananas comosus) (L.) Mill var. comosus). Amer. J. Biotech. Biosci. 2(9):0001-0015.
Bidabadi, S. S. and Jain, S. M. 2020. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants. 9(6):702-721.
Blanco-Flores, H.; Vargas-Cedeño, T. E. and García-García, E. C. 2017. In vitro regeneration of Amazonian pineapple (Ananas comosus) plants ecotype Gobernadora. Rev. Colombiana de Biotecnología. 19(1):7-20. DOI: https://doi.org/10.15446/rev.colomb.biote.v19n1.65561
Cabral, J. R. S and Matos, A. P. 1995. Pineapple breeding for resistance to Fusariosis in Brazil. Rev. Fac. Agron. (Maracay). 21:137-145.
Coppens, G.; Leal, F. and Duval, M. F. 1997. Germplasm resources of pineapples. In: Horticultural Reviews. John Wiley & Sons, Inc. New York. 133-175 pp.
Daquinta, M. A.; Cisneros, A.; Rodríguez, Y.; Escalona, M.; Pérez, M. C.; Luna, I. and Borroto, C. G. 1997. Somatic embryogenesis in pineapple (Ananas comosus L.) Merr.). Acta Hort. 425(25):1-7. DOI: https://doi.org/10.17660/ActaHortic.1997.425.28
Escalona, M.; Lorenzo, J. C.; González, B.; Daquinta, M. A.; González, J. L.; Desjardins, Y. and Borroto, C. G. 1999. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Reports. 18(9):743-748. DOI: https://doi.org/10.1007/s002990050653
Firoozabady, E. and Moy, Y. 2004. Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In vitro Cell Dev. Biol. Plant. 40(1):67-74. DOI: https://doi.org/10.1079/IVP2003494
Hernández-Barbosa, G. 2018. Caracterización social y técnica del cultivo de la piña criolla (Ananas comosus). AgroProductividad. 4(1):3-11.
Hu, B.; Zhang, G.; Liu, W.; Shi, J.; Wang, H.; Qi, M. and Xu, L. 2017. Divergent regeneration‐competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration. 4(3):132-139. DOI: https://doi.org/10.1002/reg2.82
Ikeuchi, M.; Favero, D. S.; Sakamoto, Y.; Iwase, A.; Coleman, D.; Rymen, B. and Sugimoto, K. 2019. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology. 70(1):377-406.
Kiss, E.; Kiss, J.; Gyuali, G. and Heszky, L. E. 1995. A novel method for rapid micropropagation of pineapple. HortScience. 30(1):127-129.
Kulus, D. and Tymoszuk, A. 2020. Induction of callogenesis, organogenesis, and embryogenesis in non-meristematic explants of bleeding heart and evaluation of chemical diversity of key metabolites from callus. Inter. J. Mol. Sci. 21(16):5826.
Lecona-Guzmán, C. A.; Reyes-Zambrano, S.; Barredo-Pool, F. A.; Abud-Archila, M.; Montes-Molina, J. A.; Rincón-Rosales, R. and Gutiérrez-Miceli F. A. 2017. In vitro propagation of Agave americana by indirect organogénesis. HortSci. 52(7):996-999. DOI: https://doi.org/10.21273/HORTSCI10498-16
Lee, Z. H.; Hirakawa, T.; Yamaguchi, N. and Ito, T. 2019. The roles of plant hormones and their interactions with regulatory genes in determining meristem activity. Inter. J. Mol. Sci. 20(16):4065.
Medina-Rivas, M.; Mosquera, H. R. y Aguilar-Medina, C. 2014. Micropropagación clonal y enraizamiento ex vitro de tres cultivares de piña (Ananas comosus L. Merr.) del Chocó, Colombia. Rev. Biodiversidad Neotropical. 4(2):133-40. DOI: https://doi.org/10.18636/bioneotropical.v4i2.199
Nikumbhe, P. H.; Sonavane, P. N. and Sable, P. A. 2014. In vitro technology for propagation of pineapple (Ananas comosus) cv. KEW. Inter. J. Mol. Sci. 10(1):172-174.
Pineda, A.; Vargas, T. E. and García, G. E. 2014. Regeneración de Ananas comosus (L.) Merr, ecotipo Tabë Känä, mediante organogénesis indirecta. Bioagro. 26(3):135-142.
Philips, G. C. and Garda, M. 2019. Plant tissue culture media and practices: an overview. Vitr. Cell. Dev. Biol. Plant. 55(3):242-257.
Rahman, K. W.; Ahmed, M. B.; Rahman, M. M.; Amin, M. N.; Hossain, M. S. and Ahmed, R. 2005. Large scale plant regeneration in vitro from leaf derived callus cultures of pineapple [Ananas comosus (L.) Merr. cv. Giant Kew]. Int. J. Bot. 1(2):128-32. DOI: https://doi.org/10.3923/ijb.2005.128.132
Rebolledo, M. A.; Uriza, Á. D. E. y Ángel, P. A. L. 2011. La piña y su cultivo en México: Cayena Lisa y MD2. Libro técnico núm. 27. SAGARPA-INIFAP-CIRGOC. Campo Experimental Cotaxtla. Medellín, Veracruz, México. 309 p.
Reyes-Zambrano, S. J.; Lecona-Guzmán, C. A.; Ambrosio-Calderón, J. D.; Abud-Archila, M.; Rincón-Rosales, R.; Ruíz-Valdiviezo, V. M. and Gutiérrez-Miceli F. A. 2016. Plant growth regulators optimization for maximize shoots number in Agave americana L. by indirect organogenesis. Gayana Botanica. 73(1):124-131. DOI: https://doi.org/10.4067/S0717-66432016000100014
Rodríguez, Y.; Mosqueda, M.; Companioni, B.; Arzola, M.; Borras, O.; Pérez, M. C.; Lorenzo, J. C. and Santos, R. 2002. Bioassay for in vitro differentiation of cultivar pineapples resistance levels to Heart Rot disease. In vitro Cell. Dev. Biol. Plant. 38(6):613-616. DOI: https://doi.org/10.1079/IVP2002346
Santos, J. R. and Matos, A. P. 1995. Pine- apple breeding for resistance to Fusariosis in Brazil. Rev. Fac. Agron. (Maracay). 21:137-145. DOI: https://doi.org/10.1111/j.1474-919X.1995.tb03232.x
Sarkar, T.; Nayak, P. and Chakraborty, R. 2018. Pineapple [Ananas comosus (L.)] product processing techniques and packaging: a Review. IIOAB Journal. 9(4):6-12.
SIAP (Servicio de Información Agroalimentaria y Pesquera). 2021. Panorama Agroalimentario Ed. 2021. México. 121-122 pp.
Su, Y. H.; Tang, L. P.; Zhao, X. Y. and Zhang, X. S. 2021. Plant cell totipotency: insights into cellular reprogramming. J. Integrative Plant Biol. 63(1):228-243.
Sugiyama, M. 1999. Organogénesis in vitro. Curr. Opin. Plant Biol. 2(1):61-64. DOI: https://doi.org/10.1016/S1369-5266(99)80012-0
Torres-Ávila, A.; Aguilar-Ávila, J.; Santoyo-Cortés, V. H.; Uriza-Ávila, D. E.; Zetina-Lezama, R. y Rebolledo-Martínez, A. 2018. La piña mexicana frente al reto de la innovación. Avances y retos en la gestión de la innovación. Universidad Autónoma Chapingo (UACH). 25 p.
Traas, J. 2018. Organogenesis at the shoot apical meristem. Plants. 8(1):1-9.
Usman, I. S.; Abdulmalik, M. M.; Sani, A. L. A. and Muhammad, A. S. 2013. Development of an efficient protocol for micropropagation of pineapple (Ananas comosus L. var. Smooth Cayenne). Afr. J. Agric Res. Nairobi. 8(18):2053-2056.
Vélez-Izquierdo, A.; Espinoza-García, J. A.; Uresti-Gil, J.; Jolalpa-Barrera, J. L.; Rangel-Quintos, J. and Uresti-Durán, D. 2020. Estudio técnico-económico para identificar áreas con potencial para producir piña en el trópico húmedo de México. Rev. Mex. Cienc. Agríc. 11(7):1619-1632. DOI: https://doi.org/10.29312/remexca.v11i7.2594
Wang, J.; Su, Y.; Kong, X.; Ding, Z. and Zhang, X. S. 2020. Initiation and maintenance of plant stem cells in root and shoot apical meristems. Abiotech. 1-11 pp.
Yapo, E. S.; Kouakou, T. H.; Kone, M.; Kouadio, J. Y.; Kouame, P. and Merillon, J. M. 2011. Regeneration of pineapple (Ananas comosus L.) plant through somatic embryogenesis. J. Plant Biochem. Biotechnol. 20(2):196-204. DOI: https://doi.org/10.1007/s13562-011-0046-5
Zeng, M.; Hu, B.; Li, J.; Zhang, G.; Ruan, Y.; Huang, H. and Xu, L. 2016. Stem cell lineage in body layer specialization and vascular patterning of rice root and leaf. Science Bulletin. 61(11):847-858. DOI: https://doi.org/10.1007/s11434-015-0849-1
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Revista Mexicana de Ciencias Agrícolas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.