Rendimiento de híbridos de maíz en respuesta a la fertilización foliar con bioestimulantes
DOI:
https://doi.org/10.29312/remexca.v13i2.2782Palabras clave:
Zea mays L, agricultura sustentable, alta productividad, nutrición mineralResumen
El uso de bioestimulantes ha sido una estrategia agrícola para aumento del rendimiento y la calidad de los cultivos. El objetivo de este trabajo fue evaluar el efecto de bioestimulantes en el rendimiento y en los componentes de híbridos de maíz (Zea mays L.) en Valles Altos del Estado de México. La siembra se realizó durante el ciclo primavera verano 2017 en tres ambientes (Jocotitlán, Temascalcingo, Jilotepec). Se evaluaron once híbridos de maíz (TSIRI PUMA; ATZIRI PUMA; TLAOLI PUMA; IXIM PUMA, H-50, #46#48; H-66; H-76; H-77; H-47AE y H-49AE). Los tratamientos foliares con bioestimulantes fueron los siguientes: B1= testigo; B2= Eurobor; B3= Euroligo; B4= Eurodual; B5= Euroalg. Las evaluaciones incluyeron: rendimiento de grano, producción de paja, hileras por mazorca, granos por hilera, granos por mazorca, peso volumétrico, peso de 200 granos y diámetro de mazorca. Para todas las variables se realizó un análisis varianza combinado y se realizó una prueba de comparación de medias (Tukey) y análisis de correlación (Pearson). Entre los ambientes, híbridos y en los bioestimulantes hubo diferencias significativas. En Temascalcingo se observó mayor rendimiento de grano con 13.5 t ha-1. Los híbridos presentaron rendimientos superiores a estudios reportados en la literatura, y destacan los genotipos H-66, H-50 y H-76 en el presente estudio. Los bioestimulantes aumentaron el rendimiento de grano de 7.9 a 11.4%, respecto al testigo, y afectó positivamente los componentes agronómicos de los híbridos evaluados. Los bioestimulantes resultan una alternativa en la fertilización complementaria para incremento de producción en el cultivo de maíz.
Descargas
Citas
Ahmad, R.; Khalid, A. H.; Arshad, M.; Zahir, A. and Mahmood, T. 2007. Effect of compost enriched with N and L-tryptophan on soil and maize. Agron. Sustain. Dev. 2(28):299-305.
Ashmead, H. D. 1986. The absorption mechanism of amino acid chelates by plant cells. In: Ashmead, H. D. Foliar feeding of plants with amino acid chelates. Noyes publications, park ridge, NY. 219-235. pp Battacharyya, D.; Babgohari, M. Z.; Rathor, P. and Prithiviraj, B. 2015. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 1(196):39-48. Doi: 10.1016/j.scienta.2015. 09.012.
Barbosa, R. H.; Tabaldi, L. A.; Miyazaki, F. R.; Pilecco, M.; Kassab, S. O. and Bigaton, D. 2013 Foliar copper uptake by maize plants: effects on growth and yield. Ciência Rural. 9(43):1561-1568.
Bray, R. H. and Kurtz, L. T. 1945. Determination of total, organic and available forms of phosphorus in soil. Soil Sci. 59(1):39-45.
Calvo, P.; Nelson, L. and Kloepper, J. W. 2014. Agricultural uses of plant biostimulants. Plant Soil. 1-2(383):3-41.
Cavani, L.; Ter-Halle, A.; Richard, C. and Ciavatta, C. 2006. Photosensitizing properties of protein hydrolysates-based fertilizers. J. Agr. Food Chem. 24(54):9160-9167.
Crouch, I. J. and Van-Staden, J. 1994. Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. J. Plant Physiol. 3(137):319-322.
Du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 1(196):3-14. Doi: 10.1016/j.scienta.2015.09.021.
Fernández, V; Sotiropoulos, T. y Brown, P. 2015. Fertilización foliar: principios científicos y práctica de campo. Paris, Francia, Asociación Internacional de la Industria de Fertilizantes (IFA). 49-82 p
Galindo, S. F.; Nogueira, M. L.; Bellote, J. L. M.; Gazola, R. N.; Alves, C. J. and Teixeira, F. M. C. M. 2015. Desempenho agronômico de milho em função da aplicação de bioestimulantes à base de extrato de algas. Tecnol. Ciên. Agropec. 1(9):13-19.
Gazola, D.; Zucareli, C.; Silva, S. R. and Fonseca, C. B. I. 2014. Aplicação foliar de aminoácidos e adubação nitrogenada de cobertura na cultura do milho safrinha. Rev. Bras. Eng. Agríc. Ambient. 1(18):700-707. Goldbach, H. E.; YU, Q.; Wingender, R.; Schulz, M.; Wimmer, M.; Findeklee, P. and Baluska, R. Rapid response reactions of roots to boron deprivation. 2001. J. Plant Nutr. Soil Sci. 2(164):173-181.
Grabowska, A.; Kunicki, E.; Sekara, A.; Kalisz, A. and Wojciechowska, R. 2012. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 1(77):37-48.
Ibrahim, S. M. M.; Taha, L. S. and Farahat, M. M. 2010. Influence of foliar application of pepton on growth, flowering and chemical composition of Helichrysum bracteatum plants under different irrigation intervals. Ozean J. Appl. Sci. 3(1):143-155.
Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; Francisco, S. S.; Baigorri, R. and Cruz, F. 2013. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms J. Plant Growth Regul. 1(32):31-52.
Jones, D. L. and Kielland, K. 2002. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil biol. Biochem. 2(34):209-219.
Kumar, P. and Sahoo, D. 2011. Effect of seaweed liquid extract on the growth and yield of Triticum aestivum var. Pusa gold J. Appl. Phycol. 2(23):251-255.
Maeda, H. and Dudareva, N. 2012. The shikimate pathway and aromatic amino acids biosynthesis in plants. Annu. Rev. Plant biol. 1(63):73-105. Doi: 10.1146/annurev-arplant-042811-105439.
Martinka, M.; Vaculík, M. and Lux, A. 2014. Plant cell responses to cadmium and zinc. Inapplied plant cell biology: cellular tools and approaches for plant biotechnology, plant cell monographs; Nick, P. and Opatrny, Z. (Ed.) springer: Berlin/Heidelberg, Germany. 209-246 pp.
Martínez, G. A.; Zamudio, G. B.; Tadeo, R. M.; Espinosa, C. A.; Cardoso, G. J.; Vázquez, C. G. y Turrent, F. A. 2018a. Rendimiento de híbridos de maíz grano blanco en cinco localidades de valles Altos de México. Rev. Mex. de Cienc. Agríc. 7(9):1447-1458.
Mattner, S. W.; Wite, D.; Riches, D. A.; Porter, I. J. and Arioli, T. 2013. The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biol. Agric. Hortic. 4(29):258-270.
Mladenova, Y. I.; Maini, P.; Mallegni, C.; Goltsev, V.; Vladova, R. and Vinarova, K. 1998. Siapton-anamino-acid-based biostimulant reducing osmostress metabolic changes in maize. Agro Food Ind. Hi-Tech. 6(9):18-22.
Mohanty, D.; Adhikary, S. P. and Chattopadhyay, G. N. 2013. Seaweed liquid fertilizer (slf) and its role in agriculture productivity. Ecoscan. Special Issue. (3):147-155.
Mozafar, A. A. 1987. Effect of boron on ear formation and yield components of two maize (Zea mays L.) hybrids. A. Institute of plant sciences, swiss federal institute of technology (ETHZ), 8092, Zurich. 319-332 pp.
Parrado, J.; Bautista, J.; Romero, E. J.; García-Martínez, A. M.; Friaza, V. and Tejada, M. 2008. Production of a carob enzymatic extract: potential use as a biofertilizer. Biores. Technol. 7(99):2312-2318.
Petrozza, A; Summerer, S.; Di-Tommaso, G.; Di-Tommaso, D. and Piaggesi, A. 2013. Evaluation of the effect of Radifarm® treatment on the morpho-physiological characteristics of root systems via image analysis. Acta Hortic. 1009(18):149-153.
Quezada, J. C.; Lenssen, A. W.; Moore, K. J.; Sawyer, J. E. and Summer, P. 2015. Amino acid biosynthesis byproducts are a suitable source of nitrogen for corn production. Field Crop. Res. 1(184):123-132.
Rai, V. K. 2002. Role of amino acids in plant responses to stresses. Biol. Plant. 4(45):481-487.
SAS Institute. 2002. The SAS system for Windows user’s guide. Release 9.4. SAS Institute, Cary, NC.
Sotelo, R. E. D.; González, H. A.; Cruz, B. G.; Moreno, S. F. y Cruz, C. G. 2011. Los suelos del estado de México y su actualización a la base referencial mundial del recurso suelo 2006. Rev. Mex. Cienc. Forest. 8(2):71-84.
Tadeo, R. M.; Zamudio, G. B.; Espinosa, C. A.; Turrent, F. A.; Cárdenas, M. A. L.; López, L. C.; Arteaga, E. I. y Valdivia, B. R. 2015. Rendimiento de maíces nativos e híbridos en diferente fecha de siembra y sus unidades calor. Rev. Mex. Cienc. Agríc. 1(6):33-43.
Tadeo, R. M.; Espinosa, C. A.; Canales, I. E.; López, L. C.; Zamudio, G. B.; Turrent, F. A.; Gómez, M. N.; Sierra, M. M.; Martínez, G. A.; Valdivia, B. R. and Andrés, M. P. 2020. Grain yield and population densities of new corn hybrids released by the INIFAP and UNAM for the high valleys of Mexico. Terra Latinoam. 3(38):507-515. Doi: https://doi.org/10.28940/ terra.v38i3.557.
Tejada, M.; Rodríguez, M. B.; Gómez, I.; Franco, A. L.; Benítez, C. and Parrado, J. 2016. Use of biofertilizers obtained from sewage sludges on maize yield. Eur. J. Agron. 1(78):13-19.
Tejada, M.; Rodríguez, M. B. P P. and Parrado, J. 2018. Effects of foliar fertilization of a biostimulant obtained from chicken feathers on maize yield. Eur. J. Agron. 1(96):54-59.
Turrent, F. A.; Cortés, F.; Espinosa, C. A.; Turrent, T. C. y Mejía, A. H. 2016. Cambio climático y algunas estrategias agrícolas para fortalecer la seguridad alimentaria de México. Rev. Mex. Cienc. Agríc. 7(7):1727-39.
Vaughan, A. K. F. 1977. The relation between the concentration of boron in the reproductive and vegetative organs of maize plants and their development. Rhod. J. Agric. R. 9(15):163-170.
Vázquez, C. G.; Martínez G. A.; Zamudio, G. B.; Espinosa, C. A.; Tadeo, R. M.; y Turrent, F. A. 2020. Estabilidad de rendimiento y características fisicoquímicas de grano de híbridos de maíz en Valles Altos de México. Rev. Mex. Cienc. Agríc. 8(11):1803-1814.
Yakhin, O. I.; Lubyanov, A. A.; Yakhin, I. A. and Brown, P. H. 2017. Biostimulants in plant science: a global perspective. Front. Plant Sci. 1(7):1-32. Doi: 10.3389/fpls.2016.02049.
Zamudio, G. B.; Félix, R. A.; Martínez, G. A.; Galvão, C. J. C.; Espinosa, C. A. y Tadeo, R. M. 2018. Producción de híbridos de maíz con urea estabilizada y nutrición foliar. Rev. Mex. Cien Agríc. 6(9):1231-1244.
Zhao, Y. 2010. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 1(61):49-64. Doi: 10.1146/annurev-arplant-042809-112308.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Mexicana de Ciencias Agrícolas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.