Quitinasas en plantas y posible uso como biomarcadores para el diseño de biosensores en la detección de hongos fitopatógenos

Autores/as

  • Jesús Armando Lucas-Bautista Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional. Carretera Yautepec-Jojutla km 6, calle Ceprobi 8, Yautepec, Morelos, México. CP. 62731. Tel. 735 3942020, ext. 82500
  • Silvia Bautista-Baños Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional. Carretera Yautepec-Jojutla km 6, calle Ceprobi 8, Yautepec, Morelos, México. CP. 62731. Tel. 735 3942020, ext. 82500
  • Rosa Isela Ventura-Aguilar CONACYT-CEPROBI-IPN. Carretera Yautepec-Jojutla km 6, calle Ceprobi 8, Yautepec, Morelos, México. CP. 62731. Tel. 735 3942020, ext. 82500
  • Mónica Hernández-López Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional. Carretera Yautepec-Jojutla km 6, calle Ceprobi 8, Yautepec, Morelos, México. CP. 62731. Tel. 735 3942020, ext. 82500

DOI:

https://doi.org/10.29312/remexca.v13i4.2717

Palabras clave:

hongos, mecanismos de defensa, quitina

Resumen

La quitina es el biopolímero más importante de la pared celular de los hongos, la cual se degrada por la acción de quitinasas. Las plantas sintetizan estas enzimas para protegerse de factores tanto abióticos como bióticos, incluyendo a los hongos fitopatógenos, los cuales permanecen en estado de latencia hasta encontrar las condiciones adecuadas para manifestarse. Para su identificación, se podrían considerar técnicas basadas en biomarcadores y crear dispositivos que sean rápidos, simples, específicos y confiables, tal es el caso de los biosensores. Se conoce ampliamente la especificidad de las quitinasas con la quitina, por lo que, la identificación de los hongos podría llevarse a cabo mediante un biosensor que integre a las quitinasas. En este manuscrito se revisó información acerca de la síntesis de quitinasas en plantas cuando se someten a estrés, enfocándose en los patosistemas planta-patógeno. Se mencionan también las técnicas y métodos de identificación de los hongos, resaltando el uso de biosensores. Finalmente, se propone la utilización de quitinasas como biomarcadores enzimáticos para su identificación por medio de un biosensor y su aplicación en el control de hongos fitopatógenos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahn, J. H.; Lim, J. H.; Park, J.; Oh, E. H.; Son, M.; Hong, S. and Park, T. H. 2015. Screening of target-specific olfactory receptor and development of olfactory biosensor for the assessment of fungal contamination in grain. Sensors and actuators B: chemical. 210(1):9-16. https://doi.org/10.1016/j.snb.2014.12.060

Berdugo, C. A.; Zito, R.; Paulus, S. and Mahlein, A. K. 2014. Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol. 63(6):1344-1356. https://doi.org/10.1111/ppa.12219.

Bolar, J. P.; Norelli, J. L.; Harman, G. E.; Brown, S. K. and Aldwinckle, H. S. 2001. Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res. 10(6):533-543. https://doi.org/10.1023/A:1013036732691.

Cai, Y.; Cao, F.; Wei, K.; Zhang, G. and Wu, F. 2011. Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure, and antioxidant defense enzymes in rice seedlings. J. Hazard. Mater. 192(3):1056-1066. https://doi.org/10.1016/j. jhazmat.2011.06.011.

Castillo, L. R. and Gómez-Gómez, L. 2009. Isolation of a new fungi and wound-induced chitinase class in corms of Crocus sativus. Plant Physiol. Biochem. 47(5):426-434. https://doi.org/ 10.1016/j.plaphy.2009.01.007.

Castro, L.; Flores, L. y Uribe, L. 2011. Efecto del vermicompost y quitina sobre el control de Meloidogyne incognita en tomate a nivel de invernadero. Agron. Costarricense. 35(2):21-32. https://www.redalyc.org/articulo.oa?id=43622356002.

Castro-Ortíz, L. P.; Luna Pabello, V. M. y Villalobos-Pietrini, R. 2007. Estado del arte y perspectivas del uso de biosensores ambientales en México. Rev. Internac. Contam. Amb. 23(1):35-45. https://www.redalyc.org/articulo.oa?id=37023104.

Chalupowicz, D.; Veltman, B.; Droby, S. and Eltzov, E. 2020. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit. Sensors and actuators B: Chemical. 311(1):127896. https://doi.org/10.1016/j.snb.2020.127896.

Chathurika, K. L.; Adikaram, N.; Mallika, K. B. M.; Ratnayake, B. B. M. and Abayasekara, C. 2011. Role of antifungal gallotannins, resorcinols and chitinases in the constitutive defence of immature mango (Mangifera indica L.) against Colletotrichum gloeosporioides. J. Phytopathol. 159(10):657-664. https://doi.org/10.1111/j.1439-0434.2011.01818.x.

Cramer, G. R.; Urano, K.; Delrot, S.; Pezzotti, M. and Shinozaki, K. 2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 11(1):1-14 https://doi.org/ 10.1186/1471-2229-11-163.

Crespo, R.; Pedrini, N.; Juárez, M. P. and Dal Bello, G. M. 2008. Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol. Res. 163(2):148-151. https://doi.org/10.1016/j.micres.2006.03.013.

Etefagh, R.; Azhir, E. and Shahtahmasebi, N. 2013. Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Scientia Iranica. 20(3):1055-1058. https://doi.org/10.1016/j.scient.2013.05.015.

Falcón, A. B.; Ramírez, M. A.; Márquez, R. and Hernández, M. 2002. Chitosan and its hydrolysate at tobacco-Phytophthora parasitica interaction. Cultivos Tropicales. 23(1):61-66. https://www.redalyc.org/articulo.oa?id=193218105009.

Garg, N. and Gupta, H. 2010. Isolation and purification of fungal pathogen (Macrophomina phaseolina) induced chitinase from moth beans (Phaseolus aconitifolius). J. Pharmacy Bioallied Sci. 2(1):38-43. https://doi.org/10.4103/0975-7406.62708.

Gentile, A.; Deng, Z.; La Malfa, S.; Distefano, G.; Domina, F.; Vitale, A.; Polizzi, G.; Lorito, M. and Tribulato, E. 2007. Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed. 26(2):146-151. https://doi.org/10.1111/j.1439-0523.2007.01297.x.

González-Rumayor, V.; García-Iglesias, E.; Ruiz-Galán, O. y Gago-Cabezas, L. 2005. Aplicación de biosensores en la industria agroalimentaria. Informe de Vigilancia Tecnológica. Madrid. 91 p.

Goñi, O.; Sánchez-Ballesta, M. T.; Merodio, C. and Escribano, M. I. 2009. Regulation of defense and cryoprotective proteins by high levels of CO2 in Annona fruit stored at chilling temperature. J. Plant Physiol. 166(3):246-258. https://doi.org/10.1016/j.jplph.2008.04.005.

Grover, A. 2012. Plant chitinases: genetic diversity and physiological roles. Critical reviews in plant sciences. 31(1):57-73. https://doi.org/10.1080/07352689.2011.616043.

Hong, J. K. and Hwang, B. K. 2006. Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta. 223(3):433-448. https://doi.org/10.1007/ s00425-005-0099-6.

Jashni, M. K.; Dols, I. H. M.; Iida, Y.; Boeren, S.; Beenen, H. G., Mehrabi, R.; Collemare, J. and Wit, P. J. 2015. Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence. Molecular Plant-Microbe Interactions. 28(9):996-1008. https://doi.org/10.1094/MPMI-04-15-0074-R.

Jones, M. D.; Forn, I. M.; Gadelha, C.; Egan, M. J.; Bass, D.; Massana, R. and Richards, T. A. 2011. Discovery of novel intermediate forms redefines the fungal tree of life. Nature. 474(7350):200-203. https://doi.org/10.1038/nature09984.

Karasuda, S.; Tanaka, S.; Kajihara, H.; Yamamoto, Y. and Koga, D. 2003. Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Bio. Biotechnol. Biochem. 67(1):221-224. https://doi.org/10.1271/bbb.67.221. Kasprzewska, A. 2003. Plant chitinases-regulation and function. Cell. Mol. Biol. Lett. 8(3):809-824. https://pubmed.ncbi.nlm.nih.gov/12949620/.

Kern, M. F.; Faria-Maraschin, S.; Vom-Endt, D.; Schrank, A.; Vainstein, M. H. and Pasquali, G. 2010. Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani. Applied. Biochem. Biotechnol. 160(7):1933-1946. https://doi.org/10.1007/s12010-009-8701-1.

Khan, R. S.; Sjahril, R.; Nakamura, I. and Mii, M. 2008. Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol. Reports. 2(1):13-20. https://doi.org/10.1007/s11816-008-0043-x.

Kumar, V.; Parkhi, V.; Kenerley, C. M. and Rathore, K. S. 2009. Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta. 230(2):277-291. https://doi.org/10.1007/s00425-009-0937-z.

Luna-Moreno, D.; Sánchez-Álvarez, A.; Islas-Flores, I.; Canto-Canche, B.; Carrillo-Pech, M.; Villarreal-Chiu, J. F. and Rodríguez-Delgado, M. 2019. Early detection of the fungal banana black sigatoka pathogen Pseudocercospora fijiensis by an SPR immunosensor method. Sensors. 19(3):1-12. https://doi.org/10.3390/s19030465.

Monošíka, R.; Stredanský, M. ando Sturdik, E. 2012. Biosensors-classification, characterization and new trends. Acta chimica slovaca. 5(1):109-120. https://doi.org/10.2478/v10188-012-0017-z.

Muzzarelli, R. A. A. 2011. Chitin: Formation and Diogenesis. In: chitin nanostructures in living organisms, vol. 1. Gupta, N. S. (Ed.). Springer. 1-34 pp. https://doi.org/10.1007/978-90-481-9684-5.

Naumann, T. A. 2011. Modification of recombinant maize Chita chitinase by fungal chitinase‐modifying proteins. Mol. Plant Pathol. 12(4):365-372. https://doi.org/10.1111/j.1364-3703.2010.00677.x.

Ntui, V. O.; Azadi, P.; Thirukkumaran, G.; Khan, R. S.; Chin, D. P.; Nakamura, I. and Mii, M. 2011. Increased resistance to Fusarium wilt in transgenic tobacco lines co‐expressing chitinase and wasabi defensin genes. Plant Pathol. 60(2): 221-231. https://doi.org/10.1111/ j.1365-3059.2010.02352.x.

Ortiz, D.; Noguera, R. y Posada, S. 2014. Efecto de metabolitos secundarios de las plantas sobre la emisión entérica de metano en rumiantes. Livestock research for rural development. 26(121):1.12. http://www.lrrd.org/lrrd26/11/orti26211.html.

Pérez, O. E.; Noval, B. M.; Martínez, C. B.; Torres, N. W.; Medina, C. A.; Hernández, A. y León, O. 2015. Inducción de mecanismos de defensa en plantas de tomate (Solanum lycopersicon L.) micorrizadas frente al ataque de Oidiopsis taurica (Lev.) Salm. Cultivos Tropicales. 36(1):98-106. http://scielo.sld.cu/pdf/ctr/v36n1/ctr13115.pdf.

Pretty and Hooda, V. 2018. A novel polyurethane/nano ZnO matrix for immobilization of chitinolytic enzymes and optical sensing of chitin. Int. J. Biol. Macromol. 106(1):1173-1183. https://doi.org/10.1016/j.ijbiomac.2017.08.114.

Ramírez, M. Á.; Rodríguez, A. T.; Alfonso, L. and Peniche, C. 2010. La quitina y sus derivados, biopolímeros con potencialidades de aplicación agrícola. Biotecnol. Aplicada. 27(4):270-276. http://scielo.sld.cu/pdf/bta/v27n4/bta02410.pdf.

Ray, M.; Ray, A.; Dash, S.; Mishra, A.; Achary, K. G.; Nayak, S. and Singh, S. 2017. Fungal disease detection in plants: traditional assays, novel diagnostic techniques and biosensors. Biosens. Bioelectron. 87(1):708-723. https://doi.org/10.1016/j.bios.2016.09.032.

Rodríguez-Pedroso, A. T.; Ramírez-Arrebato, M. Á.; Cárdenas-Travieso, R. M.; Falcón-Rodríguez, A. y Bautista-Baños, S. 2006. Efecto de la quitosana en la inducción de la actividad de enzimas relacionadas con la defensa y protección de plántulas de arroz (Oryza sativa L.) contra Pyricularia grisea Sacc. Rev. Mex. Fitopatol. 24(1):1-7. https://www.redalyc.org/articulo.oa?id=61224101.

Roy, S. C. and Chakraborty, B. N. 2012. Analysis of chitinase gene specific transcript accumulation in tea [Camellia sinensis (L.) O. Kuntze] during induced systemic resistance by methyl jasmonate. Indian J. Biotechnol. 11(2):142-147. http://nopr.niscair.res.in/handle/ 123456789/14011.

Sahai, A. S. and Manocha, M. S. 1993. Chitinases of fungi and plants: their involvement in morphogenesis and host‐parasite interaction. FEMS Microbiol. Reviews. 11(4):317-338. https://doi.org/10.1111/j.1574-6976.1993.tb00004.x.

Sánchez-García, C.; Cruz-Martín, M.; Alvarado-Capó, Y.; Rojas, L.; Leiva-Mora, M.; Acosta-Suarez, M. y Roque, B. 2012. Detección y cuantificación de quitinasa en hojas de banano (Musa spp.) inoculadas con Mycosphaerella fijiensis. Biotecnol. Vegetal. 12(2):119-124. https://revista.ibp.co.cu/index.php/BV/article/view/163/140.

Seidl, V. 2008. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews. 22(1):36-42. https://doi.org/10.1016/ j.fbr.2008.03.002 .

Serna-Cock, L.; Zatty-Arenas, A. M. and Ayala-Aponte, A. 2009. Use of enzymatic biosensors as quality indices: A synopsis of present and future trends in the food industry. Chilean J. Agric. Res. 69(2):270-280. https://doi.org/10.4067/S0718-58392009000200017.

Shin, S.; Mackintosh, C. A.; Lewis, J.; Heinen, S. J.; Radmer, L.; Dill-Macky, R.; Baldridge, G. D.; Zeye R. J. and Muehlbauer, G. J. 2008. Transgenic wheat expressing a barley class 2 chitinase gene has enhanced resistance against Fusarium graminearum. J. Exp. Bot. 59(9):2371-2378. https://doi.org/10.1093/jxb/ern103.

Sundar, A. R.; Velazhahan, R.; Nagarathinam, S. and Vidhyasekaran, P. 2008. Induction of pathogenesis-related proteins in sugarcane leaves and cell-cultures by a glycoprotein elicitor isolated from Colletotrichum falcatum. Biol. Plant. 52(2):321-328. https://doi.org/10.1007/s10535-008-0066-8.

Tariq, M.; Khan, A.; Tabassum, B.; Toufiq, N.; Bhatti, M.; Riaz, S.; Nasir, I. A. and Husnain, T. 2018. Antifungal activity of chitinase II against colletotrichum falcatum Went. Causing red rot disease in transgenic sugarcane. Turk. J. Biol. 42(1):45-53. https://doi.org/10.3906/biy-1709-17.

Torres-Ramírez, E. y Méndez-Albores, A. 2014. Biosensores enzimáticos. Rev. Digital Universitaria, 15(12):1-8. http://www.revista.unam.mx/vol.15/num12/art97/index.html.

Xu, J.; Xu, X.; Tian, L.; Wang, G.; Zhang, X.; Wang, X. and Guo, W. 2016. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Scientific Reports. 6(1):1-12. https://doi.org/10.1038/ srep29022.

Zhang, J.; Du, X.; Wang, Q.; Chen, X.; Lv, D.; Xu, K.; Qu, S. and Zhang, Z. 2010. Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid in Malus hupehensis (Pamp.) rehd. BMC Res. Notes. 3(1):1-6. https://doi.org/10.1186/1756-0500-3-208.

Publicado

2022-06-21

Cómo citar

Lucas-Bautista, Jesús Armando, Silvia Bautista-Baños, Rosa Isela Ventura-Aguilar, y Mónica Hernández-López. 2022. «Quitinasas En Plantas Y Posible Uso Como Biomarcadores Para El diseño De Biosensores En La detección De Hongos fitopatógenos». Revista Mexicana De Ciencias Agrícolas 13 (4). México, ME:701-13. https://doi.org/10.29312/remexca.v13i4.2717.

Número

Sección

Ensayos