Determinación de la potencia estadística de experimentos de rendimiento en maíz
DOI:
https://doi.org/10.29312/remexca.v13i4.2784Palabras clave:
campos aleatorios, ensayo blanco, número de repeticiones, potencia de prueba, simulaciones geoestadísticasResumen
El análisis prospectivo de la potencia estadística de una prueba de hipótesis debería ser una de las etapas más importantes de cualquier experimento; sin embargo, se omite con frecuencia. En particular, para Costa Rica, no se encontraron investigaciones relacionadas con este tema para experimentos de rendimiento en el cultivo de maíz. El objetivo de este trabajo fue determinar la potencia estadística de un diseño completamente aleatorizado para experimentos de rendimiento en el cultivo de maíz (Zea mays) mediante la simulación de ensayos de uniformidad. Para realizar los cálculos de potencia se estimaron los parámetros del proceso de correlación espacial de un ensayo de uniformidad establecido en Santa Cruz, Costa Rica en el año 2018. Dichas estimaciones fueron utilizadas para realizar 10 000 simulaciones de campos aleatorios de mayor tamaño, lo que permitió superponer diferente número de repeticiones y estimar la potencia estadística para detectar una diferencia de 10% con respecto a la media en un experimento con un diseño completamente aleatorizado a un nivel de significación de 5%. Se obtuvo la potencia 80% con ocho repeticiones y se concluye que, bajo las condiciones experimentales de este trabajo, en ensayos de rendimiento en el cultivo de maíz, para detectar una diferencia de medias 10% a un nivel de significación 5%, se deben usar ocho o más repeticiones.
Descargas
Citas
Bivand, R. S., Pebesma, E. and Gómez-Rubio, V. 2013. Applied spatial data analysis with R. 2nd (Ed.). Springer New York. https://doi.org/10.1007/978-1-4614-7618-4. 405 p. DOI: https://doi.org/10.1007/978-1-4614-7618-4
Cerritos, G.; Gómez, F. y Palma, A. 1994. Lote demostrativo fact: introducción de una nueva metodología para evaluar híbridos de maíz en fincas de agricultores. Informe Anual de Investigación, 7(1):76-79. https://bdigital.zamorano.edu/bitstream/11036/2455/1/206105-0167 - Copy.pdf.
Cohen, J. 1988. Statistical power analysis for the behavioral sciences. 2nd (Ed.). Routledge. https://doi.org/10.4324/9780203771587. 1-17 pp. DOI: https://doi.org/10.4324/9780203771587
Cohen, J. 1992. A power primer. Psychological Bulletin. 112(1):155-159. https://doi.org/ 10.1037/0033-2909.112.1.155. DOI: https://doi.org/10.1037/0033-2909.112.1.155
Cressie, N. A. C. 1993. Statistics for spatial data. 2nd (Ed.). John wiley y sons, Inc. https://doi.org/10.1002/9781119115151. 29-105 pp. DOI: https://doi.org/10.1002/9781119115151
Diggle, P. J. and Ribeiro, P. J. 2010. Model-based geostatistics. 1st (Ed.). Springer New York. https://doi.org/10.1007/978-0-387-48536-2. 227 p. DOI: https://doi.org/10.1007/978-0-387-48536-2
Gent, D. H.; Esker, P. D. and Kriss, A. B. 2018. Statistical power in plant pathology research. Phytopathology. 108(1):15-22. https://doi.org/10.1094/PHYTO-03-17-0098-LE. DOI: https://doi.org/10.1094/PHYTO-03-17-0098-LE
González-Lutz, M. I. 2008. Potencia de prueba: la gran ausente en muchos trabajos científicos. Agron. Mesoam. 19(2):309-313. DOI: https://doi.org/10.15517/am.v19i2.5015
Guedes, L. P. C.; Bach, R. T. and Uribe-Opazo, M. A. 2020. Nugget effect influence on spatial variability of agricultural data. Engenharia Agrícola. 40(1):96-104. https://doi.org/ 10.1590/1809-4430-ENG.AGRIC.V40N1P96-104/2020.
Kuehl, R. 2001. Diseño de experimentos: principios estadísticos de diseño y análisis de investigación. 2nd (Ed.). International Thomson. 1-66 pp.
Lantuéjoul, C. 2002. Geostatistical simulation: models and algorithms. 1st (Ed.). Springer-Verlag. https://doi.org/10.1007/978-3-662-04808-5. 1-17 pp. DOI: https://doi.org/10.1007/978-3-662-04808-5
Lapeña, B. P.; Wijnberg, K. M.; Stein, A. and Hulscher, S. J. M. H. 2011. Spatial factors affecting statistical power in testing marine fauna displacement. Ecological Applications. 21(7):2756-2769. https://doi.org/10.1890/10-1887.1. DOI: https://doi.org/10.1890/10-1887.1
Montgomery, D. 2019. Design and analysis of experiments. 10nd (Ed.). John Wiley y Sons. 1- 125 pp.
Murphy, K. R., Myors, B. y Wolach, A. H. 2014. Statistical power analysis: a simple and general model for traditional and modern hypothesis tests 4th (Ed.). Routledge. 229 p.
Petitgas, P.; Woillez, M.; Rivoirard, J.; Renard, D. and Bez, N. 2017. Handbook of geostatistics in R for fisheries and marine ecology. In: ICES cooperative research report. Issue 338. https://doi.org/10.17895/ices. 98-107 pp.
Pinheiro, J.; Bates, D.; DebRoy, S. and Sarkar, D. 2016. Nlme: linear and nonlinear mixed effects models. http://cran.r-project.org/package=nlme. 338 p.
Quinn, G. P. and Keough, M. J. 2002. Experimental design and data analysis for biologists. 1st (Ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511806384. 155-172 pp. DOI: https://doi.org/10.1017/CBO9780511806384
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Ribeiro, P. J. and Diggle, P. J. 2001. Geor: a package for geostatistical analysis. R-News. 1(2):15-18. https://doi.org/10.1159/000323281. DOI: https://doi.org/10.1159/000323281
Richter, C. and Kroschewski, B. 2012. Geostatistical models in agricultural field experiments: investigations based on uniformity trials. Agron. J. 104(1):91-105. https://doi.org/10.2134/ agronj2011.0100. DOI: https://doi.org/10.2134/agronj2011.0100
Robledo, W. 2015. Diseño y análisis de experimentos a un criterio de clasificación. Estadística y biometría: ilustraciones del uso de Infostat en problemas de agronomía. 2nd (Ed.). Editorial Brujas. 257-285 pp.
Stroup, W. 2002. Power analysis based on spatial effects mixed models: a tool for comparing design and analysis strategies in the presence of spatial variability. J. Agric. Biol. Environ. Statistics. 7(4):491–511. https://doi.org/10.1198/108571102780. DOI: https://doi.org/10.1198/108571102780
Vargas-Rojas, J. C. 2021. Simulación de ensayos en blanco para determinar la potencia estadística de de experimentos en arroz. Agron. Mesoam. 32(1):196-208. https://doi.org/10.15517/ am.v32i1.40870.
Vargas-Rojas, J. C. y Navarro-Flores, J. R. 2020. Determinación del tamaño y la forma de unidad experimental, con el método de regresión múltiple, para ensayos de rendimiento de maíz (Zea mays), guanacaste, Costa Rica. InterSedes. 21(43):1-10. https://doi.org/10.15517/ isucr.v21i43.41972.
West, B. T., Welch, K. B., y Gałecki, A. T. 2015. Linear mixed models: a practical guide using statistical Software. 2nd (Ed.). CRC Press. 38-41 pp. DOI: https://doi.org/10.1201/b17198
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Mexicana de Ciencias Agrícolas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.