Red neuronal artificial backpropagation versus modelos empíricos para estimación de radiación global diaria en Sinaloa, México*
DOI:
https://doi.org/10.29312/remexca.v7i5.229Palabras clave:
Angström-Prescott, Hargreaves, promedios, radiación solar, red neuronal artificialResumen
Se compararon los resultados de los promedios de radiación global diaria estimados con el modelo de red neuronal artificial (RNA) bakpropagation contra los obtenidos por los modelos empíricos Hargreaves, Angström-Prescott y los calibrados de estos. Se utilizó un modelo de red neuronal artificial backpropagation con el algoritmo Levenberg Marquardt para el pronóstico de los promedios diarios de radiación global de cuatro estaciones ubicadas en el distrito de riego 075 Valle del Fuerte, Los Mochis Sinaloa, México. La base de datos representa promedios diarios con vectores de 1 484 datos para entrenamiento, validación y prueba y 229 para pronóstico. Entre las variables de entrada proporcionadas por el Distrito de riego, fueron: temperatura mínima y temperatura máxima, otras fueron calculadas como: duración real de la insolación, fotoperiodo y radiación solar extraterrestre. Se obtuvieron escenarios con una, dos y tres capas ocultas, con diversos números de neuronas en cada capa oculta. La RNA e6{27} con las entradas temperatura mínima, máxima, horas brillo sol dividida por el fotoperiodo y radiación solar extraterrestre, obtuvo el mejor ajuste, con un RMSE de 1.6871 y R2 de 0.89 para los 1484 datos y para los 229, lo obtuvo el modelo Angström-Prescott calibrado con un RMSE de 2.2812 y R2 de 0.89. Para los 1 484 datos promedios, el escenario e6{27} presenta la mejor estimación de la radiación global diaria (Rs ) y es mejor que los modelos empíricos, sin embargo para los 229 datos el modelo Angström-Prescott calibrado presenta una estimación de Rs mejor al e6{27} de la RNA.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.