Water balance in hydrological basins. An application based on Google Earth Engine

Authors

  • Ignacio Sánchez-Cohen Centro Nacional de Investigación Disciplinaria en Relación Agua, Suelo, Planta y Atmósfera-INIFAP. Canal Sacramento km 6.5, Zona Industrial, Gómez Palacio, Durango, México. CP. 3140. Tel. 871 1590104 https://orcid.org/0000-0002-9063-7114
  • Sergio Iván Jiménez-Jiménez Centro Nacional de Investigación Disciplinaria en Relación Agua, Suelo, Planta y Atmósfera-INIFAP. Canal Sacramento km 6.5, Zona Industrial, Gómez Palacio, Durango, México. CP. 3140. Tel. 871 1590104 https://orcid.org/0000-0001-9776-475X
  • Marco Antonio Inzunza-Ibarra Centro Nacional de Investigación Disciplinaria en Relación Agua, Suelo, Planta y Atmósfera-INIFAP. Canal Sacramento km 6.5, Zona Industrial, Gómez Palacio, Durango, México. CP. 3140. Tel. 871 1590104 https://orcid.org/0000-0002-5122-8377
  • Gabriel Díaz-Padilla Campo Experimental Cotaxtla-INIFAP. Carretera Veracruz-Córdoba km 34.5, Medellín de Bravo, Veracruz, México. CP. 94279. Tel. 229 929185 https://orcid.org/0000-0002-4763-118X
  • Rafael Alberto Guajardo-Panes Campo Experimental Cotaxtla-INIFAP. Carretera Veracruz-Córdoba km 34.5, Medellín de Bravo, Veracruz, México. CP. 94279. Tel. 229 929185 https://orcid.org/0000-0002-2755-5546
  • Josué Delgado-Balbuena Centro Nacional de Investigación Disciplinaria en Agricultura Familiar. Carretera Ojuelos-Lagos de Moreno km 8.5, Jalisco, México. CP. 47540. Tel. 444 1559135 https://orcid.org/0000-0001-7928-1869

DOI:

https://doi.org/10.29312/remexca.v17i1.3890

Keywords:

basins, decisions, model, water

Abstract

Within the decision-making process in basins, the water balance requires readily available information and decision tools to accelerate courses of action. The rational starting point in basins is the water balance since it quantifies the basin’s potential to produce runoff. Most climate and hydrological information is dispersed and in many formats, which makes the process of analyzing the water balance more difficult and slower. The present code, written in JavaScript, was developed during 2024-2025, in the context of a fiscal project of the National Institute of Forestry, Agricultural and Livestock Research. The ACUAC is designed for use on the Google Earth Engine platform and is focused on hydrological analysis using various data sources. It allows the user to visualize and calculate the water balance for the selected basin based on precipitation, evapotranspiration, and runoff data. The results are presented as graphs and tables, which can be downloaded or edited. The user-friendly interface makes it easy to use and it is very intuitive.

Downloads

Download data is not yet available.

References

Allan, J. A. 2000. Virtual water: A strategic resource in international food policy and water policy. International Journal of Water Resources Development. 15(1):61-75.

Allen, R. G.; Pereira, L. S.; Raes, D. and Smith, M. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements FAO Irrigation and Drainage Paper No. 56. Food and Agriculture Organization of the United Nations (FAO). 3-13 pp. http://www.fao.org/3/X0490E/x0490e00.html.

CNA. 2021. Estadísticas del agua en México. 42-52 pp. https://files.conagua.gob.mx/conagua/publicaciones/Publicaciones/EAM%202021.pdf.

Delgado, B. J.; Arredondo, J. T.; Loescher, H. W.; Pineda-Martínez, L. F.; Carbajal, J. N.; and Vargas, R. 2019. Seasonal precipitation legacy effects determine the carbon balance of a semiarid grassland. Journal of Geophysical Research: biogeosciences. 124(4):987-1000. https://doi.org/10.1029/2018JG004799.

García-Codron, J. C.; Diego-Liaño, C.; Fdez-Arróyabe, H. P.; Garmendia-Pedraja, C. y Rasilla Álvarez, D. 2004. El clima entre el mar y la montaña. Asociación Española de Climatología y Universidad de Cantabria. 619-628 pp.

Gleick, P. H. 2014. Water security: The water-food-energy-climate nexus. Science. 345(6198):318-322. https://doi.org/10.1126/science.1258852.

Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D. and Moore, R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. 202(1):18-27. https://doi.org/10.1016/j.rse.2017.06.031.

Hao, Z.; Chen, X. and Zhang, X. 2021. Satellite-based hydrological modeling and water resource management. Remote Sensing. 13(12):2423. https://doi.org/10.3390/rs13122423.

Jiménez-Jiménez, S.; Marcial, P. M. J.; Ojeda, B. W.; Sifuentes, B. E.; Inzunza, M. A. and Sanchez, C. I. 2022. VICAL: global calculator to estimate vegetation indices for agricultural areas with landsat and sentinel-2 Data. Agronomy. 12(7):1518. Doi:10.3390/agronomy12071518.

Kalnay, E. 2003. Atmospheric modeling, data assimilation and predictability. Cambridge University Press. 150-170 pp. https://assets.cambridge.org/97805217/96293/frontmatter/9780521796293-frontmatter.pdf.

Li, Y.; Wang, Z. and Zhang, L. 2022. Impact of terrain and land use on hydrological modeling accuracy in large basins using satellite-derived data. Journal of Hydrology, 599:126306. https://doi.org/10.1016/j.jhydrol.2021.126306.

Lijuan, C.; Yong, Z. and Ying, S. 2011. Climate change effect on hydrological processes over the Yangtze River basin. Quaternary International. 244(2):202-210 https://doi.org/10.1016/j.quaint.2011.01.004.

Perilla, G. A. and Mas, J. F. 2020. Google Earth Engine (GEE): una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube. Investigaciones Geográficas, (101). https://doi.org/10.14350/rig.59929.

Quintana-Molina, J. R.; Sánchez-Cohen, I.; Jiménez-Jiménez, S. I.; Marcial-Pablo, M. J.; Trejo-Calzada, R. and Quintana-Molina, E. 2023. Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine. Revista de Teledetección. 62:21-38. https://doi.org/10.4995/raet.2023.19368.

Real, R. and Vargas, J. M. 1996. The probabilistic basis of Jaccard’s index of similarity. Systematic Biology. 45(3):380-385. https://doi.org/10.1093/sysbio/45.3.380.

Reyes, J.; Pérez, M. y Rodríguez, L. 2019. Modelamiento de evapotranspiración en cultivo utilizando índices de vegetación obtenidos con sensores remotos Sentinel-2: Caso de estudio desarrollado en CENICAÑA 2019-2020. 83 p.

Rodell, M.; Velicogna, I. and Famiglietti, J. S. 2018. Satellite-based estimates of groundwater depletion in India. Nature. 460(7258):999-1002. https://doi.org/10.1038/nature08238.

Rodell, M.; Houser, P. R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Arsenault, K. and Lohmann, D. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society. 85(3):381-394.

Schroeder, W.; Sulla-Menashe, D. and Giglio, L. 2014. The MODIS active fire detection algorithm and data products: an overview. Remote Sensing of Environment. 178(216):370-380. https://doi.org/10.1016/j.rse.2013.07.028.

United Nations. 2020. The United Nations world water development report. Water and climate change. UNESCO. 79-94 pp. https://unesdoc.unesco.org/ark:/48223/pf0000372983.

Velásquez-Valle, M. A.; Sánchez-Cohen, I. and Hawkins, R. H. 2017. Rainfall runoff relationships in a semiarid rangeland watershed in central Mexico based on the CN-NRCS approach. Model. Earth Syst. Environ. 3(2):1263-1272. https://doi.org/10.1007/s40808-017-0379-8.

Zhang, L.; Tian, J. and He, H. 2015. Evaluation of water use efficiency derived from MODIS products against eddy variance measurements in China. Remote Sensing. 7(9):11183-11201.

Zhao, F.; Tang, Q.; Liu, X. and Zhang, X. 2015. Assessing the performance of remotely sensed precipitation and GLDAS hydrological variables in streamflow simulation in the Huaihe river basin, China. Hydrology and Earth System Sciences. 19(5):2201-2213. https://doi.org/10.5194/hess-19-2201-2015.

Zhang, L.; Liu, D. and Zhou, Y. 2020. Evaluation of remote sensing-based precipitation datasets for hydrological applications. Journal of Hydrometeorology. 21(4):919-934. https://doi.org/10.1175/JHM-D-19-0120.1.

Published

2026-02-20

How to Cite

Sánchez-Cohen, Ignacio, Sergio Iván Jiménez-Jiménez, Marco Antonio Inzunza-Ibarra, Gabriel Díaz-Padilla, Rafael Alberto Guajardo-Panes, and Josué Delgado-Balbuena. 2026. “Water Balance in Hydrological Basins. An Application Based on Google Earth Engine”. Revista Mexicana De Ciencias Agrícolas 17 (1). México, ME:e3890. https://doi.org/10.29312/remexca.v17i1.3890.

Issue

Section

Articles

Most read articles by the same author(s)