Water balance in hydrological basins. An application based on Google Earth Engine
DOI:
https://doi.org/10.29312/remexca.v17i1.3890Keywords:
basins, decisions, model, waterAbstract
Within the decision-making process in basins, the water balance requires readily available information and decision tools to accelerate courses of action. The rational starting point in basins is the water balance since it quantifies the basin’s potential to produce runoff. Most climate and hydrological information is dispersed and in many formats, which makes the process of analyzing the water balance more difficult and slower. The present code, written in JavaScript, was developed during 2024-2025, in the context of a fiscal project of the National Institute of Forestry, Agricultural and Livestock Research. The ACUAC is designed for use on the Google Earth Engine platform and is focused on hydrological analysis using various data sources. It allows the user to visualize and calculate the water balance for the selected basin based on precipitation, evapotranspiration, and runoff data. The results are presented as graphs and tables, which can be downloaded or edited. The user-friendly interface makes it easy to use and it is very intuitive.
Downloads
References
Allan, J. A. 2000. Virtual water: A strategic resource in international food policy and water policy. International Journal of Water Resources Development. 15(1):61-75.
Allen, R. G.; Pereira, L. S.; Raes, D. and Smith, M. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements FAO Irrigation and Drainage Paper No. 56. Food and Agriculture Organization of the United Nations (FAO). 3-13 pp. http://www.fao.org/3/X0490E/x0490e00.html.
CNA. 2021. Estadísticas del agua en México. 42-52 pp. https://files.conagua.gob.mx/conagua/publicaciones/Publicaciones/EAM%202021.pdf.
Delgado, B. J.; Arredondo, J. T.; Loescher, H. W.; Pineda-Martínez, L. F.; Carbajal, J. N.; and Vargas, R. 2019. Seasonal precipitation legacy effects determine the carbon balance of a semiarid grassland. Journal of Geophysical Research: biogeosciences. 124(4):987-1000. https://doi.org/10.1029/2018JG004799.
García-Codron, J. C.; Diego-Liaño, C.; Fdez-Arróyabe, H. P.; Garmendia-Pedraja, C. y Rasilla Álvarez, D. 2004. El clima entre el mar y la montaña. Asociación Española de Climatología y Universidad de Cantabria. 619-628 pp.
Gleick, P. H. 2014. Water security: The water-food-energy-climate nexus. Science. 345(6198):318-322. https://doi.org/10.1126/science.1258852.
Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D. and Moore, R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. 202(1):18-27. https://doi.org/10.1016/j.rse.2017.06.031.
Hao, Z.; Chen, X. and Zhang, X. 2021. Satellite-based hydrological modeling and water resource management. Remote Sensing. 13(12):2423. https://doi.org/10.3390/rs13122423.
Jiménez-Jiménez, S.; Marcial, P. M. J.; Ojeda, B. W.; Sifuentes, B. E.; Inzunza, M. A. and Sanchez, C. I. 2022. VICAL: global calculator to estimate vegetation indices for agricultural areas with landsat and sentinel-2 Data. Agronomy. 12(7):1518. Doi:10.3390/agronomy12071518.
Kalnay, E. 2003. Atmospheric modeling, data assimilation and predictability. Cambridge University Press. 150-170 pp. https://assets.cambridge.org/97805217/96293/frontmatter/9780521796293-frontmatter.pdf.
Li, Y.; Wang, Z. and Zhang, L. 2022. Impact of terrain and land use on hydrological modeling accuracy in large basins using satellite-derived data. Journal of Hydrology, 599:126306. https://doi.org/10.1016/j.jhydrol.2021.126306.
Lijuan, C.; Yong, Z. and Ying, S. 2011. Climate change effect on hydrological processes over the Yangtze River basin. Quaternary International. 244(2):202-210 https://doi.org/10.1016/j.quaint.2011.01.004.
Perilla, G. A. and Mas, J. F. 2020. Google Earth Engine (GEE): una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube. Investigaciones Geográficas, (101). https://doi.org/10.14350/rig.59929.
Quintana-Molina, J. R.; Sánchez-Cohen, I.; Jiménez-Jiménez, S. I.; Marcial-Pablo, M. J.; Trejo-Calzada, R. and Quintana-Molina, E. 2023. Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine. Revista de Teledetección. 62:21-38. https://doi.org/10.4995/raet.2023.19368.
Real, R. and Vargas, J. M. 1996. The probabilistic basis of Jaccard’s index of similarity. Systematic Biology. 45(3):380-385. https://doi.org/10.1093/sysbio/45.3.380.
Reyes, J.; Pérez, M. y Rodríguez, L. 2019. Modelamiento de evapotranspiración en cultivo utilizando índices de vegetación obtenidos con sensores remotos Sentinel-2: Caso de estudio desarrollado en CENICAÑA 2019-2020. 83 p.
Rodell, M.; Velicogna, I. and Famiglietti, J. S. 2018. Satellite-based estimates of groundwater depletion in India. Nature. 460(7258):999-1002. https://doi.org/10.1038/nature08238.
Rodell, M.; Houser, P. R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Arsenault, K. and Lohmann, D. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society. 85(3):381-394.
Schroeder, W.; Sulla-Menashe, D. and Giglio, L. 2014. The MODIS active fire detection algorithm and data products: an overview. Remote Sensing of Environment. 178(216):370-380. https://doi.org/10.1016/j.rse.2013.07.028.
United Nations. 2020. The United Nations world water development report. Water and climate change. UNESCO. 79-94 pp. https://unesdoc.unesco.org/ark:/48223/pf0000372983.
Velásquez-Valle, M. A.; Sánchez-Cohen, I. and Hawkins, R. H. 2017. Rainfall runoff relationships in a semiarid rangeland watershed in central Mexico based on the CN-NRCS approach. Model. Earth Syst. Environ. 3(2):1263-1272. https://doi.org/10.1007/s40808-017-0379-8.
Zhang, L.; Tian, J. and He, H. 2015. Evaluation of water use efficiency derived from MODIS products against eddy variance measurements in China. Remote Sensing. 7(9):11183-11201.
Zhao, F.; Tang, Q.; Liu, X. and Zhang, X. 2015. Assessing the performance of remotely sensed precipitation and GLDAS hydrological variables in streamflow simulation in the Huaihe river basin, China. Hydrology and Earth System Sciences. 19(5):2201-2213. https://doi.org/10.5194/hess-19-2201-2015.
Zhang, L.; Liu, D. and Zhou, Y. 2020. Evaluation of remote sensing-based precipitation datasets for hydrological applications. Journal of Hydrometeorology. 21(4):919-934. https://doi.org/10.1175/JHM-D-19-0120.1.
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Revista Mexicana de Ciencias Agrícolas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.
