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Resumen
La producción de arándano (Vaccinium corymbosum L.) en México se encuentra en rápida
expansión; sin embargo, el manejo del nitrógeno y el estrés salino siguen siendo desafíos
importantes. Este estudio evaluó los efectos de la fertilización con amonio (NH4

+) y nitrato (NO3
-),

con o sin cloruro de sodio (NaCl, 30 mM), sobre el crecimiento, el rendimiento y la calidad del
fruto del arándano ‘Biloxi’ cultivado en sustrato de fibra de coco. Se empleó un diseño factorial 3x3
completamente aleatorizado más un control, variando la fuente de nitrógeno, la concentración (75%
y 100%) y la salinidad. El NH4

+ incrementó significativamente la biomasa (121.2%), la producción
de flores (316%), el número de frutos (231%) y el rendimiento (162.7%) en comparación con el
NO3

-. Una dosis de N del 100% mejoró los brotes (19.5%) y el conteo de frutos (43.4%), pero redujo
el tamaño del fruto. La salinidad redujo el número de frutos (-70.3%) y el rendimiento (-53.1%) sin
afectar el crecimiento vegetativo. Las interacciones significativas entre la fuente de nitrógeno, su
concentración y la salinidad influyeron en la floración, la calidad y las características agronómicas.
Los resultados indican que la fertilización con NH4

+ mejora la productividad del arándano en
condiciones salinas, lo que favorece estrategias de gestión del nitrógeno más eficientes.
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Introducción
En la última década, México se ha convertido en uno de los cinco principales productores 
mundiales de arándanos (Vaccinium corymbosum L.), con un crecimiento anual en el área cultivada 
y un rendimiento superior al 15%, concentrado principalmente en Jalisco, Michoacán, Sinaloa, 
Baja California y Guanajuato (Trejo-Pech et al., 2024). Esta expansión está impulsada por la 
creciente demanda internacional y las reconocidas propiedades nutracéuticas de la fruta (Krishna 
et al., 2023), fomentando el cultivo en regiones con condiciones edafoclimáticas específicas: 
altitudes entre 1 500-4 700 m, temperaturas que oscilan entre 3-17 °C, suelos ácidos (pH 4-5) y 
conductividad eléctrica (CE) entre 0.25 y 1.5 dS m-1 (Meléndez-Jácome et al., 2021).

Como especie calcífuga, el arándano muestra una preferencia por el amonio (NH4
+); no obstante, 

varios estudios informan que el nitrato (NO3
-) puede mejorar la asimilación de nitrógeno y mejorar 

los rasgos fisiológicos y agronómicos (Alt et al., 2017; Anwar et al., 2024). Si bien el NH4
+ puede 

estimular el crecimiento temprano, también aumenta la CE del sustrato, lo que puede inducir estrés 
salino y limitar el desarrollo de las plantas (Machado et al., 2014; Hirzel et al., 2024).

Por el contrario, se ha demostrado que la fertilización con NO3
- promueve la fotosíntesis, la 

acumulación de compuestos antioxidantes y la tolerancia al estrés, particularmente en condiciones 
salinas (Leal-Ayala et al., 2021; Cárdenas-Navarro et al., 2024). Dado que el estrés salino 
interrumpe procesos fisiológicos clave, pero también puede inducir una síntesis antioxidante 
beneficiosa (Krishna et al., 2023), es crucial evaluar estrategias nutricionales que mitiguen sus 
efectos. Por lo tanto, el objetivo de este estudio fue evaluar el impacto de diferentes relaciones 
NO3

-/NH4
+, combinadas con NaCl, en el crecimiento y rendimiento del arándano, con el objetivo de 

optimizar el manejo del nitrógeno bajo estrés por salinidad.

Materiales y métodos

Condiciones experimentales y material vegetal
El experimento se llevó a cabo en condiciones de invernadero de baja tecnología en Ascensión, 
Aramberri, Nuevo León, México (24° 20’ 14.96” N, 99°56’ 9.5” W; 1 961 msnm; temperatura 
media anual 15.6 °C). Las plantas de arándano (Vaccinium corymbosum L.), variedad Biloxi, 
propagadas in vitro y adquiridas en macetas de 1 L, se trasplantaron el 2 de octubre de 2023 
en bolsas de plástico de 50 × 50 cm llenas con 20 L de fibra de coco prelavada de textura 
media. Durante la aclimatación, las plantas recibieron una solución nutritiva estándar (SN1) 
compuesta de K2SO4, KH2PO4, Ca (NO3)2 4H2O, MgSO4 7H2O, (NH4)2SO4 y micronutrientes, de 
acuerdo con Frías-Ortega et al. (2020).

Diseño experimental y tratamientos
Se utilizó un diseño completamente al azar con nueve tratamientos: ocho de una combinación 
factorial 3 × 3 de fuente de nitrógeno (NO3

- o NH4
+), concentración (75% o 100%) y salinidad (0

o 30 mM NaCl), y 50/50 NO3
-/NH4

+ (control). Los tratamientos fueron: T1: NH4
+ 100%; T2: NH4

+

100% + NaCl; T3: NH4
+ 75%; T4: NH4

+ 75% + NaCl; T5: NO3
- 100%; T6: NO3

- 100% + NaCl; T7:
NO3

- 75%; T8: NO3
- 75% + NaCl; T9: 50% NH4

+ / 50% NO3
-. Cada tratamiento tuvo 10 repeticiones

(una planta por maceta), dispuestas en un área de 48 m², con hileras orientadas de norte a sur,
con espaciamiento de 0.3 m entre macetas y 0.8 m entre hileras. Se utilizó malla antiáfidos para
evitar el contacto con el suelo.

Aplicación de tratamientos y ferrriego
Los tratamientos comenzaron el 1 de abril de 2024. El riego fue manual y diario, utilizando
soluciones nutritivas específicas para el tratamiento (Cuadro 1), con drenaje de 6-20%.
Características del agua: CE 0.51 dS m-1, pH 6.95, y contenía Ca2+, Mg2+, Na+, HCO3

-, Cl- y SO4
2-.
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Los fertilizantes incluidos fueron: A) K2SO4; B) Mg (NO3)2 6H2O; C) (NH4)2SO4; D) KH2PO4; E) KNO3;
F) Ca (NO3)2 4H2O; G) CaSO4 2H2O; H) MgSO4 7H2O; I) (NH4)2SO4 y J) micronutrientes (Cuadro
1). Para los tratamientos de salinidad (T2, T4, T6 y T8), el riego una vez a la semana incluyó solo
30 mM de NaCl.

Cuadro 1. Ferlizantes ulizados en la formulación de soluciones nutrivas (g L-1).

Tratamientos A B C D E F G H I J

(g L-1)

T1-T2 0.17 0.08 0.22 0.19 0.35 0.02

T3-T4 0.17 0.08 0.14 0.1 0.19 0.25 0.02

T5-T6 0.04 0.22 0.09 0.19 0.26 0.06 0.02

T7-T8 0.11 0.22 0.09 0.03 0.26 0.09 0.02

T9 0.13 0.09 0.26 0.19 0.16 0.02

Mediciones de crecimiento y rendimiento
Cada 14 días durante 182 días, a dos tallos marcados por planta se les midió la longitud (cm),
el diámetro (mm), el número de hojas, los brotes secundarios y las yemas. El recuento de flores
incluyó corolas blancas completamente desarrolladas. Se contaron frutos con diámetro >5 mm. El 4
de marzo de 2025 se recolectó biomasa de brotes cortando tallos a 30 cm por encima de la corona,
se cortó en trozos de 3-5 cm, se pesó en fresco y se secó a 28.3 ° C hasta un peso constante.

Parámetros de calidad y rendimiento del fruto
La cosecha comenzó 180 días después del inicio del tratamiento. Para cada cosecha, a un fruto
aleatorio se le midió el diámetro polar y ecuatorial (mm). Para el análisis de rendimiento se
consideraron todos los frutos con un diámetro de 8-13 mm, excluyendo los valores atípicos (Cortés-
Rojas et al., 2016). Se registró el número total de frutos y el rendimiento acumulado (g) por planta.
Se extrajo el jugo (0.5 mL) y se midió el contenido de sólidos solubles (°Brix) y la temperatura del
jugo utilizando un refractómetro digital (HANNA HI96801).

Análisis estadísco
Los datos se analizaron utilizando IBM SPSS v25. Se aplicó Anova para detectar los efectos del
tratamiento y se utilizó la prueba de Tukey (p < 0.05) para las comparaciones post hoc donde se
encontraron diferencias significativas.

Resultados

Caracteríscas agronómicas
Las plantas fertilizadas con NH4

+ exhibieron valores significativamente más altos en todas las
variables medidas en comparación con las tratadas con NO3

-: longitud del tallo (18.1%), diámetro
(21.3%), número de hojas (41.7%), brotes secundarios (70.6%), brotes totales (42.5%), flores
(316%) y frutos (193.5%). La biomasa también aumentó un 121.2% (209.4 g vs 94.7 g con NO3

-

(Cuadro 2). Estos hallazgos se alinean con los informes que muestran que el NH4
+ promueve el

desarrollo de las raíces y la absorción de nutrientes (Arias et al., 2024), aunque el manejo adecuado
del pH es fundamental para una asimilación efectiva (Jiang et al., 2019).
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Cuadro 2. Comportamiento agronómico del arándano bajo diferentes fuentes de nitrógeno en medio salino.

Factor Nivel LT (cm) DT (mm) NH (Nº) BS (Nº) BT (Nº) Fo (Nº) Fr (Nº) MS (g)

(N) NH4
+ 42.1a 4.2a 27.9a 2.1a 66.8a 100.4a 140.4a 209.4a

NO3
- 35.6b 3.4a 19.7b 1.2b 46.9c 24.2c 47.9c 94.6c

Control 38.7ab 4a 25.2a 1.8ab 53.6b 41.7b 80.8b 168.8b

(C) 100 39a 3.8a 22.5a 1.7a 61.9a 67.9a 110.9a 155.3a

75 38.7a 3.8a 25.1a 1.7a 51.8b 56.6b 77.4b 148.7a

Control 38.7a 4a 25.2a 1.8a 53.6b 41.7a 80.8ab 168.8a

(S) 30 37.9a 3.6a 22.9a 1.4b 54.9a 51.8b 78.2b 165.3a

0 39.9a 4a 24.7a 2a 58.8a 72.7a 110a 138.7b

Control 38.7a 4a 25.2a 1.8ab 53.6a 41.7b 80.8ab 168.8a

Interacción

N x C 0.01 0.05 0.01 0.11 0 0 0 0

N x S 0.74 0.34 0.8 0.64 0.81 0.93 0.69

C x S 0.17 0.59 0.18 0.11 0.53 0.94 0.13

N x C x S 0.13 0.05 0.02 0.04 0.44 0.01 0.12 0.58

LT= longitud del tallo (cm); DT= diámetro del vástago (mm); NH= número de hojas; BS= brotes secundarios; BT= brotes 
totales; Fo= número de flores; Fr= número de frutos; MS= materia seca; po de N (N); concentración (C) y NaCl (S, 

mM). Diferentes letras en las medias por columna en cada factor indican diferencias significavas (Tukey, p ≤ 0.05).

Por el contrario, la menor eficiencia del NO3
- puede deberse a sus mayores demandas energéticas

de reducción (Ali, 2020; Berger et al., 2020). No obstante, Alt et al. (2017) observaron que las
plantas de arándano pueden adaptarse al NO3

- y activar la nitrato reductasa, destacando su
plasticidad metabólica. El aumento de la concentración de nitrógeno al 100% mejoró aún más el
número de brotes (19.5%), flores (20.1%) y frutos (43.4%) en comparación con N al 75% (Cuadro
2). Estos resultados respaldan el papel del nitrógeno en la síntesis de aminoácidos, enzimas y
hormonas esenciales para el desarrollo floral (Santiago y Sharkey, 2019; Cárdenas-Navarro et al.,
2024). Cabe destacar que la producción de frutos aumentó un 43.3% en plantas con N al 100% vs
75% (Cuadro 2) y un 87.4% en frutos cosechados (Cuadro 3).

La salinidad a 30 mM de NaCl redujo los brotes secundarios (-30.4%), las flores (-28.8%) y los frutos
(-28.9%), mientras que el crecimiento vegetativo (LT, DT, NH y BT) no se vio afectado (Cuadro 2).
Estos efectos se atribuyen a que Na+ desplaza a K+, lo que inhibe las enzimas relacionadas con la
floración (Wu, 2018; Atta et al., 2023). Los hallazgos se alinean con Molnar et al. (2024), quienes
documentaron la supresión del crecimiento de brotes bajo estrés salino in vitro. Se observaron
interacciones significativas entre la fuente de N × la concentración (N × C) para la mayoría de los
rasgos agronómicos (LT, DT, NH, BT, Fo, Fr y MS (Cuadro 2). NH4

+ al 100% mostró la respuesta
más fuerte. Con un 75%, las diferencias entre las fuentes de N disminuyeron, pero el NH4

+ aún
superó al NO3

- en términos de brotes, flores y materia seca. Esto sugiere una modulación iónica
dependiente de la concentración (Cárdenas-Navarro et al., 2024).

Bajo salinidad, la fertilización con NH4
+ redujo aún más la floración, mientras que el NO3

- mantuvo
la producción, probablemente debido a la acidificación apoplástica inducida por NH4

+ que exacerba
la entrada de Na+ y limita la absorción de K+ y Ca2+ (Shilpha et al., 2023). Por lo tanto, la forma y
la concentración de nitrógeno deben optimizarse conjuntamente en condiciones salinas.

Comportamiento producvo
El NH4

+ superó significativamente al NO3
- en número total de frutos (231%) y rendimiento

acumulado (162.7%) en comparación con el NO3
- y 147.8% y 68% frente al control, respectivamente

(Cuadro 3). Los tamaños de fruto 9-12 predominaron tanto en los tratamientos de NH4
+ como en los

de NO3
-, aunque el NH4

+ aumentó ligeramente la participación (81.4% vs 78.5%). Con N al 100%,
el recuento de frutos por planta aumentó en un 87.2% vs N al 75% y en un 110.2% vs el control.
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El rendimiento acumulado aumentó un 35.7% sobre el control y un 40.8% sobre N al 75% (Cuadro
3). Los tamaños de fruto 9-12 también predominaron a un N más alto.

Cuadro 3. Comportamiento producvo del arándano bajo diferentes fuentes de nitrógeno en medio salino.

Factor Nivel 8 9 10 11 12 13 FT RA

Tamaño

(N) NH4
+ 8.9a 22.2a 39.9a 31.6a 22.5a 10.7a 142.4a 71.7a

NO3
- 2.3b 5.3b 10.1b 9.8b 8.5b 4.4b 43b 27.3b

Control 0.8b 3.3b 12.6ab 14.3b 13.9b 8.1ab 57.5b 42.6b

(C) 100 9.4a 21.6a 36a 23.5a 17.9a 7.5a 120.9a 57.9a

75 1.9b 5.9b 14a 17.9a 12.75a 7.6a 64.6b 41.1a

Control 0.8b 3.3b 12.6a 14.3a 13.9a 8.1a 57.5b 42.6a

(S) 30 3.7ab 11.4ab 17a 16.9a 10.95b 5.4a 68.6b 39.1b

0 7.6a 16.13a 33a 24.5a 19.7a 9.7a 116.8a 59.9a

Control 0.8b 3.3b 12.6a 14.3a 13.9ab 8.1a 57.5ab 42.6a

Interacción

N x C 0.02 0 0.03 0.05 0.03 0.08 0.01 0.03

N x S 0.02 0.5 0.23 0.6 0.58 0.75 0.27 0.79

C x S 0.09 0.25 0.11 0.91 0.95 0.45 0.3 0.95

N x C x S 0.12 0.95 0.4 0.87 0.5 0.55 0.76 0.62

Los factores 8 a 13 corresponden al número de frutos por tamaño, frutos totales cosechados (FT, candad), 
rendimiento acumulado (RA, g), po de N (N), concentración (C) y NaCl (S, mM). Diferentes letras en cada columna 

para cada factor indican diferencias significavas (Tukey, p ≤ 0.05).

Estos resultados resaltan la importancia del N en la producción de clorofila y la fotosíntesis,
mejorando la disponibilidad de energía para el desarrollo reproductivo (Zhang et al., 2023; Yang
et al., 2023). Se han reportado puntos de saturación alrededor de 206-222 kg N ha-1 (Fang et al.,
2020b), validando el 100% como óptimo. Doyle et al. (2021) enfatizaron la eficiencia de NH4

+ en la
translocación de carbohidratos sin causar estrés osmótico.

La salinidad (30 mM de NaCl) redujo la producción total de frutos en un 70.3% en comparación
con las condiciones no salinas (116.9 vs. 68.6 frutos planta-1), y el rendimiento disminuyó un 53.1%
(Cuadro 3). Los tamaños de los frutos disminuyeron, especialmente el tamaño 10 (-94.3%), lo
que indica una restricción en la expansión del parénquima debido al estrés osmótico (Denaxa et
al., 2022). La interacción N × C fue significativa para los tamaños de fruto 8-12, frutos totales y
rendimiento. El NH4

+ al 100% alcanzó los valores más altos, mientras que el NO3
- se comportó

mejor al 75%, lo que confirma la importancia de optimizar tanto la fuente como la concentración. Ni
las interacciones C × S ni N × C × S mostraron diferencias significativas, excepto para el tamaño
8 (Cuadro 3), lo que indica que los efectos de la salinidad fueron en gran medida independientes
de la fuente de N.

Comportamiento de calidad
Los tratamientos con NH4

+ y NO3
- no mostraron diferencias significativas en el diámetro, peso,

firmeza o sólidos solubles de la fruta (Cuadro 4), lo que es consistente con estudios previos (Petridis
et al., 2018; Anwar et al., 2024). Estos rasgos están controlados principalmente por la genética y
están vinculados a la dinámica fuente-sumidero (Ferrão et al., 2018).
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Cuadro 4. Comportamiento de calidad del arándano bajo diferentes fuentes de nitrógeno en medio salino.

Factor Niveles DE DP P SST T

(N) NH4
+ 11.87 b 8.92 a 0.78 a 14.51 a 20.61 a

NO3
- 11.8 b 8.91 a 0.75 a 13.42 ab 17.49 b

Control 12.25 a 9.12 a 0.81 a 13.35 b 17.11 a

(C) 100 11.58 b 8.75 b 0.72 b 14.41 a 19.19 a

75 11.86 b 8.96 a 0.77 a 13.51 a 18.91 a

Control 12.47 a 9.26 a 0.86 a 13.35 a 17.11 b

(S) 30 11.47 c 8.7 b 0.7 b 14.4 a 19.51 a

0 11.98 b 9.01 b 0.79 a 13.52 a 18.59 b

Control 12.47 a 9.26 a 0.86 a 13.35 a 17.11 c

Interacción

N x C 0.78 0.29 0.40 0.79 0

N x S 0 0 0.05 0.01 0

C x S 0.39 0.05 0.09 0.15 0

N x C x S 0.85 0.73 0.92 0.46 0

Diámetro ecuatorial (DE, mm), diámetro polar (DP, mm), peso (g), sólidos solubles totales (SST, oBrix) y temperatura 
del jugo de fruta (T, °C). Diferentes letras por columna para cada factor indican diferencias significavas (prueba de 

Tukey, p ≤ 0.05).

Sin embargo, el NH4
+ aumentó la temperatura del jugo en un 17.9%, probablemente debido a una

mayor respiración y acumulación de azúcar (Shilpha et al., 2023; Duan et al., 2023). Los azúcares
solubles aumentaron un 8.7% con NH4

+ vs un 0.5% con NO3
-. Con N al 100%, el tamaño y el

peso de los frutos disminuyeron (-7.1% DE, -5.5% DP, -16.3% peso), probablemente debido a
la dilución de recursos entre más frutos (Jorquera-Fontena et al., 2018; Doyle et al., 2021). Los
sólidos solubles permanecieron estables, lo que indica un transporte homeostático de azúcares
(Sellami et al., 2019). La temperatura del jugo aumentó en un 12.2% (100%) y un 10.6% (75%).

La salinidad (30 mM de NaCl) causó una reducción significativa en el DE, DP y el peso (-8%,
-6%, -18.6% (Cuadro 4). Los sólidos solubles aumentaron ligeramente (7.9%) como respuesta al
estrés, y la temperatura del jugo aumentó un 14%. La interacción N × S fue significativa para el
DE, DP, la firmeza y los SST. La interacción combinada de N × C × S solo afectó la temperatura
del jugo, lo que indica que la acumulación térmica es particularmente sensible a las interacciones
entre nutrientes y salinidad (Cuadro 4). Los suministros moderados de N mejoran el transporte de
NO3

-, la actividad de GS/GOGAT y la osmoprotección (Nazir et al., 2023; Farvardin et al., 2020).
Además, la señalización redox apoplástica explica la reducción de la floración bajo altos niveles
de NH4

+ y salinidad (Kesawat et al., 2023).

Conclusiones
La fuente y concentración de nitrógeno, en interacción con la salinidad, influyó significativamente
en el rendimiento vegetativo y reproductivo de las plantas de arándano. La fertilización con
amonio promovió consistentemente un mayor vigor de los brotes, floración y cuajado de frutos
en comparación con el nitrato, particularmente a concentraciones más altas de nitrógeno. Por el
contrario, las condiciones salinas redujeron notablemente el desarrollo reproductivo, al tiempo que
ejercieron efectos mínimos sobre el crecimiento vegetativo. Estos hallazgos resaltan la importancia
crítica de optimizar la forma y la dosis de nitrógeno para mejorar la productividad y mitigar los
efectos adversos de la salinidad. Las interacciones significativas entre la fuente de nitrógeno, la
concentración y el estrés por salinidad refuerzan la necesidad de estrategias integradas de manejo
de nutrientes adaptadas a ambientes salinos en el cultivo de arándanos.
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