DOI: https://doi.org/10.29312/remexca.v16i8.4134

elocation-id: e4134

Ávila-Granados, Pérez-López, Rubí-Arriaga, Hernández-Ávila, Flores-Carrera, and González-Huerta: Example for the analysis of a series of experiments arranged in balanced complete blocks

Journal Metadata

Journal Identifier: remexca [journal-id-type=publisher-id]

Journal Title Group

Journal Title (Full): Revista mexicana de ciencias agrícolas

Abbreviated Journal Title: Rev. Mex. Cienc. Agríc [abbrev-type=publisher]

ISSN: 2007-0934 [pub-type=ppub]

Publisher

Publisher’s Name: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias

Article Metadata

Article Identifier: 10.29312/remexca.v16i8.4134 [pub-id-type=doi]

Article Grouping Data

Subject Group [subj-group-type=heading]

Subject Grouping Name: Articles

Title Group

Article Title: Example for the analysis of a series of experiments arranged in balanced complete blocks

Contributor Group

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Ávila-Granados

Given (First) Names: Francisco Antonio

X (cross) Reference [ref-type=aff; rid=aff1]

Superscript: 1

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Pérez-López

Given (First) Names: Delfina de Jesús

X (cross) Reference [ref-type=aff; rid=aff2]

Superscript: 2

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Rubí-Arriaga

Given (First) Names: Martín

X (cross) Reference [ref-type=aff; rid=aff2]

Superscript: 2

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Hernández-Ávila

Given (First) Names: Jesús

X (cross) Reference [ref-type=aff; rid=aff2]

Superscript: 2

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Flores-Carrera

Given (First) Names: Laura Stephanie

X (cross) Reference [ref-type=aff; rid=aff1]

Superscript: 1

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: González-Huerta

Given (First) Names: Andrés

X (cross) Reference [ref-type=aff; rid=aff2]

Superscript: 2

X (cross) Reference [ref-type=corresp; rid=c1]

Superscript: §

Affiliation [id=aff1]

Label (of an Equation, Figure, Reference, etc.): 1

Institution Name: in an Address: Programa de Maestría y Doctorado en Ciencias Agropecuarias y Recursos Naturales-Facultad de Ciencias Agrícolas- Campus Universitario ‘El Cerrillo’-Universidad Autónoma del Estado de México. El Cerrillo Piedras Blancas, Toluca de Lerdo, Estado de México, México. Tel. 722 2965552, ext. 117. (pcarn@uaemex.mx). [content-type=original]

Institution Name: in an Address: Programa de Maestría y Doctorado en Ciencias Agropecuarias y Recursos Naturales [content-type=orgdiv1]

Institution Name: in an Address: Facultad de Ciencias Agrícolas [content-type=orgdiv2]

Institution Name: in an Address: Universidad Autónoma del Estado de México [content-type=orgname]

Address Line

City: Toluca de Lerdo

State or Province: Estado de México

Country: in an Address: México [country=MX]

Affiliation [id=aff2]

Label (of an Equation, Figure, Reference, etc.): 2

Institution Name: in an Address: Centro de Investigación y Estudios Avanzados en Fitomejoramiento-Facultad de Ciencias Agrícolas-Campus Universitario ‘El Cerrillo’-Universidad Autónoma del Estado de México. El Cerrillo Piedras Blancas, Toluca de Lerdo, Estado de México, México. AP. 435. Tel. 722 2965518, ext. 60382. (antoniogranados4@gmail.com; djperezl@uaemex.mx; jhernandeza@uaemex.mx; mrubia@uaemex.mx; lphaniefc@hotmail.com). [content-type=original]

Institution Name: in an Address: Centro de Investigación y Estudios Avanzados en Fitomejoramiento [content-type=orgdiv1]

Institution Name: in an Address: Facultad de Ciencias Agrícolas [content-type=orgdiv2]

Institution Name: in an Address: Universidad Autónoma del Estado de México [content-type=orgname]

Address Line

City: Toluca de Lerdo

State or Province: Estado de México

Country: in an Address: México [country=MX]

Author Note Group

Correspondence Information: [§] Autor para correspondencia: agonzalezh@uaemex.mx [id=c1]

Publication Date [date-type=pub; publication-format=electronic]

Day: 12

Month: 12

Year: 2025

Publication Date [date-type=collection; publication-format=electronic]

Season: Nov-Dec

Year: 2025

Volume Number: 16

Issue Number: 8

Electronic Location Identifier: e4134

History: Document History

Date [date-type=received]

Month: 07

Year: 2025

Date [date-type=accepted]

Month: 10

Year: 2025

Permissions

License Information [license-type=open-access; xlink:href=https://creativecommons.org/licenses/by-nc/4.0/; xml:lang=es]

Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons

Abstract

Title: Abstract

There is little published information in some series of experiments, such as in the randomized complete block design in a balanced complete block arrangement (RCBD-BCBA). This study presents a hypothetical example to apply the methodology published in González et al . (2024b), which is an extension of a case formulated by Gomez and Gomez (1984). The analysis of variance and the comparison of means between treatments using Fisher’s least significant difference test correspond to the analysis of the data combining the information of two trials, based on the statistical model that was chosen for the present research, the validation of the results generated can be done with other statistical packages, such as Info-Gen, SAS, OPSTAT, STAR, PBTools, or Agrobase, among others.

Keyword Group [xml:lang=en]

Title: Keywords:

Keyword: application of InfoStat

Keyword: randomized complete block design

Keyword: two-factor experiments

Counts

Figure Count [count=2]

Table Count [count=9]

Reference Count [count=25]

Abstract

There is little published information in some series of experiments, such as in the randomized complete block design in a balanced complete block arrangement (RCBD-BCBA). This study presents a hypothetical example to apply the methodology published in González et al . (2024b), which is an extension of a case formulated by Gomez and Gomez (1984). The analysis of variance and the comparison of means between treatments using Fisher’s least significant difference test correspond to the analysis of the data combining the information of two trials, based on the statistical model that was chosen for the present research, the validation of the results generated can be done with other statistical packages, such as Info-Gen, SAS, OPSTAT, STAR, PBTools, or Agrobase, among others.

Keywords

application of InfoStat, randomized complete block design, two-factor experiments.

Introduction

In the High Valleys of Mexico, precipitation, solar radiation, the incidence of hail or frost, as well as the heterogeneity in the soils of cooperating farmers are the primary sources of random variability that mask the evaluation and identification of better cultivars; these also affect the validation, generation, application, or transfer of technology ( González et al ., 2008 ; González et al ., 2010 ; González et al ., 2011 ).

In Mexico, the statistical genetic analysis of the series of experiments has been theoretically addressed in Sahagún (1993 ; 1994 ; 1998 ; 2007a ) for the completely randomized experimental design (CRD) and the randomized complete block design (RCBD). For a series of trials in a Latin square design (LSD), De la Loma (1982) presented the results of the analysis of variance of three years, as well as the comparison of treatment means with Student’s t-test. Rodríguez et al . (2025) presented a methodology for analyzing a split-plot arrangement in an LSD, without and with balanced subsampling.

Studies such as those by Gomez and Gomez (1984) ; Shikari et al . (2015) ; Maranna et al . (2021) presented the analysis of data from a trial conducted in an experimental design of randomized complete blocks in a balanced complete block arrangement (RCBD-BCBA); González et al . (2024a) built the statistical model, presented the formulas for calculating degrees of freedom and sum of squares, and developed a code for Info-Gen to analyze the data published by Gomez and Gomez (1984) .

In an RCBD in a BCBA, each replication is divided into g groups, and each of these receives a different subset of treatments, similar to Lattices, to control for heterogeneity caused by two gradients of random variability ( Gomez and Gomez, 1984 ; Martínez, 1988 ; Cochran and Cox, 2004 ). González et al . (2024a , 2024b ) divided the experimental area into a main unit (MU) and subunits (SUB), as in a split-plot arrangement, and extended it to a series of experiments. Thus, the primary objective of the present study was to show how to analyze data from a series of experiments across environments in an RCBD-BCBA, validating the results with InfoStat.

Materials and methods

Model, symbology and software used

The statistical model and symbology employed in this study were reported in González et al . (2024b) . The artificial data were analyzed using InfoStat ( https://www.InfoStat.com.ar ), but SAS ( https://www.sas.com ) and Info-Gen ( http://www.info-Gen.com.ar ) could also be used; to validate the comparison of means of treatments within groups, the OPSTAT package ( http://14.139.232.166/opstat/default.asp ) could also be applied ( Sheoran et al ., 1998 )

Results

Calculating degrees of freedom (DF)

DF total = art-1= 2(3) (45)-1 = 269; DF environments (A)= a - 1= 2-1= 1; DF groups (G)= g -1= 3-1= 2. DF replications within A= a(r-1)= 2(2)= 4; DF A x G= (a -1)(g -1)= 2; DF error a= a(g-1)(r-1)= 2(2)(2) = 8; DF treatments within groups {T(G)}= t -g= 45 - 3= 42; DF AxT(G)= (a-1) (t-g)= 42; DF error b= a(r-1)(t-g)= 2(2)(42)= 168.

Calculating the sum of squares (SS)

SS total= i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 - i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t = {4.212+4.012+3.932+,…, + 4.312+[3.412+3.062+2.762+,…,+3.862}- ( 1084.067 ) 2 2 ( 3 ) ( 45 ) = 4516.517261 - 4352.597261.

SS environments (A)= i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 - i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t = 462.357 2 + 621.71 2 3 ( 45 ) - ( 1084.067 ) 2 2 ( 3 ) ( 45 ) = 4446.646811 - 4352.597261 = 94.049.

SS groups= i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 - i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t = 3 ( 346.935 2 + 348.656 2 + 388.476 2 ) 2 ( 3 ) ( 45 ) - ( 1084.067 ) 2 2 ( 3 ) ( 45 ) = 4364.872257 - 4352.597261= 12.27499.

With the information in Table 1 , the following is calculated: SS AxG= { g r t i = 1 a j = 1 g Y i j .. 2 - i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l - i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t }-SS A-SS G = ( 147.825 2 + 150.496 2 + + 224.44 2 ) ( 3 ) ( 45 ) - ( 1084.067 ) 2 2 ( 3 ) ( 45 ) } - 94.049 - 12.27499= 0.9582.

Table 1

Table 1. Values for calculating the AxG interaction.

Environments (i) Groups (j)
1 2 3 Total
1 147.825 150.496 164.036 462.357
2 199.11 198.16 224.44 621.71
Sum 346.935 348.656 388.476 1084.067

With the data in Table 2 , the following is calculated: SS replications within environments A= { i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t } - SS A= { ( 166.969 2 + 148.441 2 + + 203.87 2 ) ( 45 ) - ( 1084.067 ) 2 2 ( 3 ) ( 45 ) } - 94.049= (4453.4655 - 4352.597261) - 94.049= 6.819.

Table 2

Table 2. Data to calculate SS replications within environments {R(A)}.

Environments (i) Replications (k)
1 2 3 Total
1 166.969 148.441 146.947 462.357
2 213.45 204.39 203.87 621.71
Sum 380.419 352.831 350.817 1084.067

The data in Table 3 are used to indirectly obtain the SS of error a: SS MU= SS A + SS G + SS AxG + SS R(A) + SS error a.

Therefore: SS error a= SS MU - SS A - SS G - SS AxG - SS R(A)= { i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t } - SS A - SS G - SS AxG - SS R(A)= [ 3 ( 53.53 2 + 48.77 2 + + 75.06 2 ) 45 - ( 1084.067 ) 2 2 ( 3 ) ( 45 ) ] - 94.049 - 0.9582 - 12.27499 - 6.819= 1.3336.

Table 3

Table 3. Data to calculate SS error a.

Environment Combination for Groups and Replications (jk)
11 12 13 21 22 23 31 32 33 Sum
1 53.5 48.77 45.51 54.82 48.31 47.36 58.6 51.35 54 462.35
2 67.1 66.66 65.28 69.36 65.27 63.53 76.92 72.46 75 621.71
Total 120.7 115.43 110.79 124.18 113.58 110.88 135.52 123.81 129.1 1084.1

Also: SS error a: 1 r t i = 1 a k = 1 r Y i . k . 2 - i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t + 1 r t i = 1 a Y i 2 = 4468.032093 - 4459.879494 - 4453.46555 + 4446.646811= 1.33386.

The SS of treatments (TREATs) nested within each group (Gs) will be calculated as follows.

SS TREAT(G1)= 1 a r l = 1 t / g Y . 1 . l 2 - g a r t l = 1 t / g Y . 1 . l 2 2 ( 3 ) = ( 23.064 2 + 23.602 2 + + 22.862 2 ) 2 ( 3 ) - 3 ( 346.935 2 ) 2 ( 3 ) ( 45 ) = 3.679.

SS TREAT(G2)= 1 a r l = 1 t / g Y . 2 . l 2 - g a r t l = 1 t / g Y . 2 . l 2 2 ( 3 ) = ( 22.865 2 + 25.185 2 + + 25.72 2 ) 2 ( 3 ) - 3 ( 348.656 2 ) 2 ( 3 ) ( 45 ) = 8.2.

SS TREAT(G3)= 1 a r l = 1 t / g Y . 3 . l 2 - 1 a r l = 1 t / g Y . 3 . l 2 - g a r t l = 1 t / g Y . 3 . l 2 2 ( 3 ) = ( 25.533 2 + 21.639 2 + + 28.758 2 ) 2 ( 3 ) - 3 ( 388.476 2 ) 2 ( 3 ) ( 45 ) = 14.548.

To verify: SS T(G) : 1 a r l = 1 t Y l 2 - g a r t i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t = 26.427.

SS Trea 5= SS A + SS G + SS AxG + SS T(G) + SS AxT(G).

Where: SS Treat 5= i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t .

From Table 4 , SS A x T(G)= 1 3 {(10.9142+,…, +9.9422)+ (9.9852+,…,+11.122) + (10.4332+,…,+12.4782) + (12.152+,…,+12.922) + (12.882+,…,+14.582)+ (15.102+,…,+ 16.282 )}- 94.049 - 12.27 - 0.9582 - 26.43= (4491.873261 - 4352.597261) - 94.049 - 12.27 - 0.9582 - 26.43= 5.568.

Table 4

Table 4. Data to calculate SS A xT(G).

Environment 1 Environment 2
Group 1 (T1-T15) Group 2 (T16-T30) Group 3 (T31-T45) Group 1 (T1-T15) Group 2 (T16-T30) Group 3 (T31-T45)
10.914 9.985 10.433 12.15 12.88 15.1
8.972 10.335 8.729 14.63 14.85 12.91
8.885 9.983 10.892 13.67 13.18 13.7
11.563 9.55 9.889 13.18 13.16 13.74
9.241 9.057 9.815 12.05 10.38 13.57
9.076 9.09 11.81 13.86 12.2 16.11
9.85 9.56 11.82 13.35 12.46 16.03
9.286 11.26 9.358 13.4 14.45 11.99
9.048 9.439 11.139 13.32 12.77 15.9
10.982 9.314 11.107 12.82 12.45 15.64
11.084 10.158 12.096 14.55 13.11 16.28
9.852 11.361 12.222 12.75 14.94 16.8
8.619 10.046 11.336 12.25 13.87 15.62
10.511 10.238 10.921 14.21 12.88 14.77
9.942 11.12 12.478 12.92 14.58 16.28
147.825 150.496 164.036 199.11 198.16 224.44

Additionally, SS total= SS A + SS G + SS R(A) + SS AxG + SS error a + [SS TREAT (G1) + SS TREAT (G2) + SS TREAT (G3) + ,..., + SS TREAT (Gg)] + SS AxT(G) + SS error b.

Thus: SS error b= SS total - (SS A + SS G + SS R(A) + SS AxG + SS error a) - [SS TREAT (G1) + SS TREAT (G2) + SS TREAT (G3) + ,..., + SS TREAT (Gg)] - SS AxT(G).

With the previous information, the following is calculated: SS error b= 163.92 - 94.049 -12.27499 - 6.819 - 0.9582 - 1.33361 - 26.42816 - 5.56644= 16.4906.

Another alternative is presented below: SS error b= i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 - i = 1 a j = 1 g k = 1 r Y i j k . 2 - 1 r i = 1 a j = 1 g l = 1 t Y i j . l 2 + g r t i = 1 a j = 1 g Y i j .. 2 = 4516.517261- 4468.032093 - 4491.873261 + 4459.879494= 16.4914.

If the experimental area is divided into main unit (MU) and subunit (SU) and as proposed by González et al . (2024a , 2024b ), SS total is defined as follows= SS MU + SS SU, then the following expression will also be valid: SS MU= SS A + SS G + SS R(A) + SS AxG + SS Error a= 94.049 + 12.27499 + 6.819 + 0.9582 + 1.33361= 115.4348.

Also, SS MU= SS Treat 1 = i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 a r t = 4468.032093 - 4352.597261= 115.434832.

By difference: SS SU= SS total - SS MU= 163.91 - 115.434832= 48.471568.

For verification, based on previous calculations, SS SU= i = 1 a j = 1 g k = 1 r l = 1 t Y i j k l 2 - g t i = 1 a j = 1 g k = 1 r Y i j k . 2 = 4516.517261- 4468.032093= 48.485168.

Using InfoStat

The labels for the columns will be environments, groups, replications, treatments, and response variable, identified as A, G, R, T, X, respectively. The art= 270 data are entered in that order ( Balzarini et al ., 2008 ; Di Rienzo et al ., 2008 ; Balzarini and Di Rienzo, 2016 ) 246]. First, a general analysis of variance will be obtained, and then the comparison of treatment means within groups will be carried out with Fisher’s least significant difference (LSD) test; Figures 1 and 2 show the procedures for applying this software and Tables 5 , 6 , 7 , 8 and 9 present the outputs with the results of the reference statistical analysis 247, 248].

Figure 1

Figure 1. Successive stages to obtain the general analysis of variance 249].

2007-0934-remexca-16-08-e4134-gf1.png
Figure 2

Figure 2. Successive stages to obtain the comparison of means for treatments nested within groups 250].

2007-0934-remexca-16-08-e4134-gf2.png
Table 5

Table 5. Combined Anova generated by InfoStat 251].

SV DF SS MS F p Error
A 1 94.05 94.05 564.1 < 0.01 GxA> R
G 2 12.27 6.14 36.81 < 0.01 GxA> R
AxG 2 0.96 0.48 2.87 0.11 GxA> R
R 4 6.82 1.7 10.22 < 0.01 GxA> R
GxA> R 8 1.33 0.17 1.7
G> T 42 26.43 0.63 6.41 < 0.01
AxG> T 42 5.57 0.13 1.35 0.09
Error 168 16.49 0.1
Total 269 163.91
Table 6

Table 6. Comparison of means for factor A ( p = 0.01) 253].

Levels Means n SE Symbology
2 4.61 135 0.04 a
1 3.42 135 0.04 b

[i] Means with the same letter are statistically the same (LSD= 0.16676) 255].

Table 7

Table 7. Comparison of means for factor G ( p = 0.01) 256].

Levels Means n SE Symbology
3 4.32 90 0.04 a
2 3.87 90 0.04 b
1 3.85 90 0.04 b

[i] Means with the same letter are statistically the same (LSD= 0.20424) 258].

Table 8

Table 8. Comparison of means for A with G ( p = 0.01).

A G Means n SE Symbology
2 3 4.99 45 0.06 a
2 1 4.42 45 0.06 b
2 2 4.4 45 0.06 b
1 3 3.65 45 0.06 c
1 2 3.34 45 0.06 d
1 1 3.29 45 0.06 d

[i] Means with the same letter are statistically the same (LSD= 0.2888).

Table 9

Table 9. Comparison of means within groups (InfoStat, p = 0.01).

Treatment G1 Treatment G2 Treatment G3
11 4.27 a 27 4.38 a 42 4.84 a
4 4.12 ab 23 4.29 ab 45 4.79 a
14 4.12 ab 30 4.28 ab 41 4.73 ab
10 3.97 abc 17 4.2 abc 36 4.65 ab
2 3.93 abcd 28 3.99 abcd 37 4.64 ab
7 3.87 abcd 26 3.88 bcd 39 4.51 abc
1 3.84 abcd 18 3.86 bcd 43 4.49 abc
6 3.82 abcd 29 3.85 bcd 40 4.46 abc
15 3.81 abcd 16 3.81 bcd 44 4.28 bcd
8 3.78 bcd 19 3.79 cd 31 4.26 bcd
12 3.77 bcd 24 3.7 de 33 4.1 cd
3 3.76 bcd 22 3.67 de 34 3.94 de
9 3.73 bcd 25 3.63 de 35 3.9 de
5 3.55 cd 21 3.55 de 32 3.61 e
13 3.48 d 20 3.24 e 38 3.56 e

[i] Means with equal letters, within each group, are statistically the same.

Discussion

The use of a statistical model leads to the generation of an analysis of variance ( Figure 1 , Table 5 ); De la Loma (1982) ; Mendenhall (1987) ; Martínez (1988) , Sahagún (2007b) ; Montgomery (2009) pointed out that this is important to face the problem of the design and analysis of a trial where the calculation of degrees of freedom, sum of squares, and the construction of appropriate statistical tests considering mean squares and mathematical expectations are involved, especially when considering random or mixed models for more complex situations.

The model built by González et al . (2024 a) is linked to an example provided by Gomez and Gomez (1984) ; Shikari et al . (2015) ; Maranna et al . (2021) ; they suggested that the groups of treatments could be formed by important differences between them, with minimal variation within them, or by their geographical and/or genetic origin ( González et al ., 2008 ; González et al ., 2010 ; González et al ., 2011 ).

This study complements the research carried out by Sahagún (1993 ; 1994 ; 1998 ; 2007a ); Martínez (1988) ; Gomez and Gomez (1984) ; González et al . (2024b) , the BCBA-RCBD is recommended when the experimental area is very heterogeneous and when the number of treatments is greater than 30; with two replications, the statistical hypotheses could be tested, and it would be feasible to extend their analysis to a series of experiments, particularly when completely randomized designs, RCBD, LSD or some Lattice present some disadvantages ( Martínez, 1988 ; Cochran and Cox, 2004 ; Montgomery, 2009 ).

In González et al . (2019 ; 2023 ; 2024a ; 2024b ); Rodríguez et al . (2025) , free versions of InfoStat, Info-Gen, and SAS were used; in these, they employed CRD, RCBD and LSD or LSD in split plots. This situation was generalized to a BCBA-RCBD, but if the experiments are extensive, the student versions will slow down or will not generate results; commercial versions of both would have a lower cost to the user, but SAS is the better software.

InfoStat and InfoGen are very flexible in a series of experiments as the data are automatically sorted, and the degrees of freedom and mean square of Error b are manually entered ( Figure 2 ; González et al ., 2024 b ); both are also very reliable and easy to use for analyzing data from each trial ( Shikari et al ., 2015 ; Maranna et al ., 2021 ; González et al ., 2024a ).

The Anovas prior to the comparison of means within groups (not included) are not correct, but they allow us to verify that the addition of SS T(G) in each group (3.68 + 8.2 + 14.55) is equal to SS T(G) [26.43; Table 5 ]; if differences between groups and between treatments withing groups are not significant, InfoGen or InfoStat can generate an Anova and a comparison of means with various methodologies, for a series of RCBD experiments, using the RCBA-RCBD database ( González et al ., 2024b ).

If Tukey’s test is applied, its validation could be carried out with the OPSTAT software, available free of charge on its website; in this, only the arithmetic means of each treatment within each group are entered, along with the degrees of freedom and mean square of error b ( Table 5 , Figure 2 ).

Conclusions

With InfoStat, it is easy and reliable to generate an analysis of variance (Anova) for the series of experiments and when applying the LSD test to treatments nested within groups, because it allows us to manually enter the degrees of freedom and mean square of Error b; the Anovas that are generated in conjunction with the comparison of means between treatments within groups are not correct, but can be used to verify that their addition is equal to SS T(G) of the Anova in the series of experiments. If the statistical model used in the present study is not chosen, the experiment series database can be used directly to obtain an Anova and a comparison of means of treatments nested within groups for each trial. If the groups of treatments in the BCBA-RCBD are statistically equal, the data could be analyzed as a series of experiments in an RCBD using the information contained in the same file.

Bibliography

1 

Balzarini, M. G. and Di Rienzo, J. A. 2016. InfoGen. FCA. Universidad Nacional de Córdoba, Argentina. http://www.info-Gen.com.ar.

2 

Balzarini, M. G.; González, L.; Tablada, M.; Casanoves, F.; Di Rienzo, J. A. y Robledo, C. W. 2008. Manual del usuario de InfoStat. Editorial Brujas, Córdoba, Argentina. 348 p.

3 

Cochran, W. G. y Cox, G. M. 2004. Diseños experimentales. Ed. Trillas, S.A. de C.V. 6ta. reimpresión. México, DF. 661 p. ISBN: 968-24-3669-9.

4 

De-Loma, O. J. L. 1982. Experimentación agrícola. Editorial Hispano Americana, SA. 2da. Ed. México, DF. 493 p. ISBN: 96 84 38 45 72.

5 

Di Rienzo, J. A.; Casanoves, F.; Balzarini, M. G.; González, L.; Tablada, M. y Robledo, C. W. 2008. InfoStat Versión 2008. Grupo InfoStat, FCA. Universidad Nacional de Córdoba, Argentina. https://www.infostat.com.ar.

6 

Gomez, K. A. and Gomez, A. A. 1984. Statistical procedures for agricultural research. 2nd. Ed. John Wiley & Sons, Inc. Printed in Singapore. 680 p.

7 

González, A.; Pérez, D. J.; Sahagún, J.; Franco, O.; Morales, E. J.; Rubí, M.; Gutiérrez, F. y Balbuena, A. 2010. Aplicación y comparación de métodos univariados para evaluar la estabilidad en maíces del Valle Toluca Atlacomulco, México. Revista Agronomía Costarricense. 34(2):129-143.

8 

González, H. A.; Pérez, L. D. J.; Balbuena, M. A.; Franco, M. J. R.; Gutiérrez, R. F. y Rodríguez, G. J. A. 2023. Submuestreo balanceado en experimentos monofactoriales usando InfoStat y InfoGen: validación con SAS. Revista Mexicana de Ciencias Agrícolas. 14(2):235-249.

9 

González, H. A.; Pérez, L. D. J.; Franco, M. O.; Nava, B. E. B.; Gutiérrez, R. F.; Rubí, A. M. y Castañeda, V. A. 2011. Análisis multivariado aplicado al estudio de las interrelaciones entre cultivares de maíz y variables agronómicas. Revista Ciencias Agrícolas Informa. 20(2):58-65.

10 

González, H. A.; Pérez, L. D. J.; Hernández, A. J.; Franco, M. J. R. P.; Rubí, A. M. y Balbuena, M. A. 2024a. Tratamientos anidados dentro de grupos en arreglo de bloques completos balanceados. Revista Mexicana de Ciencias Agrícolas. 15(2):e3634. https://doi.org/10.29312/remexca.v15i2.3634.

11 

González, H. A.; Pérez, L. D. J.; Rubí, A. M.; Gutiérrez, R. F.; Franco, M. J. R. P. y Padilla, L. A. 2019. InfoStat, InfoGen y SAS para contrastes mutuamente ortogonales en experimentos en bloques completos al azar en parcelas subdivididas. Revista Mexicana de Ciencias Agrícolas. 10(6):1417-1431.

12 

González, H. A.; Pérez, L. D.J.; Hernández, A. J.; Franco, M. J. R. P.; Balbuena, M. A. y Rubí, A. M. 2024b. Serie de experimentos para tratamientos anidados en grupos en arreglo de bloques completos balanceados. Revista Mexicana de Ciencias Agrícolas 15(7):e3831. https://doi.org/10.29312/remexca.v15i7.3831.

13 

González, H. A.; Vázquez, G. L. M.; Sahagún, C. J. y Rodríguez, P. J. E. 2008. Diversidad fenotípica de variedades e híbridos de maíz en el Valle Toluca-Atlacomulco, México. Revista Fitotecnia Mexicana. 31(1):67-76.

14 

Maranna, S.; Nataraj, V.; Kumawat, G.; Chandra, S.; Rajesh, V.; Ramteko, R.; Manohar, P. R.; Ratnaparkhe, M. B.; Husain, S. M.; Gupta, S. and Khandekar, N. 2021. Breeding for higher yield, early maturity, wider adaptability and wáterlogging tolerance in soybean (Glycine max L.): a case study. Scientific Reports. 11:22853. https://doi.org/10.1038/s41598-021-02064-x.

15 

Martínez, G. A. 1988. Diseños experimentales. Métodos y elementos de teoría. Ed. Trillas. 1ra. Ed. México, DF. 756 p.

16 

Mendenhall, W. 1987. Introducción a la probabilidad y la estadística. Grupo Editorial Iberoamérica. 1ra. Ed. México, DF. 626 p.

17 

Montgomery, D. C. 2009. Design and analysis of experiments. 7th. Ed. John Wiley & Sons. Inc. USA. 656 p.

18 

Rodríguez, G. J. A.; Pérez, L. D. J.; Hernández, A. J.; Balbuena, M. A.; Franco, M. J. R. P. y González, H. A. 2025. Parcelas divididas en Cuadro Latino: modelos estadísticos y formulas sin y con submuestreo. Revista Mexicana de Ciencias Agrícolas. 16(2):e3926. https://doi.org/10.29312/remexca.v16i2.3926.

19 

Sahagún, C. J. 1993. Funcionalidad de cuatro modelos para las evaluaciones genotípicas en series de experimentos. Revista Fitotecnia Mexicana. 16(3):161-171.

20 

Sahagún, C. J. 1994. Evaluación de genotipos en series de experimentos: diferencias en parámetros genéticos generados en dos modelos. Revista Fitotecnia Mexicana. 17(2):116-125.

21 

Sahagún, C. J. 1998. Construcción y análisis de los modelos fijos, aleatorios y mixtos. Departamento de Fitotecnia. Programa Nacional de Investigación en Olericultura. Universidad Autónoma Chapingo (UACH). Boletín técnico núm. 2. 64 p.

22 

Sahagún, C. J. 2007a. Evaluación de genotipos en heterogeneidad meteorológica intrarregional: confusión             vs             anidamiento de años en localidades. Revista Fitotecnia Mexicana. 30(1):97-104.

23 

Sahagún, C. J. 2007b. Estadística descriptiva y probabilidad: una perspectiva biológica. 2da. Ed. Universidad Autónoma Chapingo (UACH), Texcoco, estado de México, México. 282 p. ISBN: 9789680203574.

24 

Sheoran, O. P.; Tonk, D. S.; Kaushik, L. S.; Hasija, R. C. and Pannu, R. S. 1998. Statistical software package for agricultural research workers. Recent advances in information theory, statistical and computer applications by Hooda, D. S. and Hasija, R. C. Department of Mathematics Statistics, CCS HAU, Hisar. 139-143 pp.

25 

Shikari, A. B.; Pourray, G. A.; Sofi, N. R.; Hussain, A.; Dar, Z. A. and Iqbal, A. M. 2015. Group balanced block design for comparisons among oilseed             Brassicae             . Academic Journals. 10(8):302-305. https://doi.org/10.5897/SRE2014.5792.