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Abstract

The socioeconomic sector is increasingly relying on efficient and accessible tools to predict
agri-environmental conditions. This study uses a decision tree classification model to identify
agricultural cycles similar to the El Nifio Southern Oscillation climate phenomenon. The objective is
to historically relate the national agricultural yields of rainfed corn and beans in Mexico with ENSO,
through the spring-summer (SS) agricultural censuses of 1980-2014, and to identify the spring-
summer cycles analogous to the El Nifio Southern Oscillation and subsequently simulate the yields
of 2015-2023 (average of analogous years) for both crops. Additionally, the values of the simulations
were adjusted using methods such as yield deviation and trend with the Mann-Kendall test of the
previous cycle. The results of the mean absolute percentage error (MAPE) show a good fit for corn
(MAPE= 4%) and beans (MAPE= 14%) with the use of deviations; the incorporation of the trend
slightly improves the fit in beans (MAPE= 11%), but not in corn (MAPE= 22%). The effectiveness of
these methods in forecasting yields months in advance depends mainly on the accuracy of El Nifio
Southern Oscillation temperature forecasts. This empirical method demonstrates potential to be
applied in other rainfed crops and regions influenced by the El Nifio Southern Oscillation; therefore,
it offers a valuable tool for anticipating socioeconomic impacts related to this phenomenon.
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Introduction

In Mexico, the area planted in 2023 reached a total of 20 000 000 ha (Mha). Among the
spring-summer (SS) crops, grain corn and beans occupied 5.7 Mha and 0.85 Mha, respectively
(https://nube.agricultura.gob.mx/cierre-agricola). Due to their relevance in food security,
these crops contribute approximately 60% to 90% of national consumption, according to reports
(Mufioz et al., 2022).

Interannual climate variability is one of the main factors affecting agricultural production in the
country, where authors have shown that it is related to the ocean-atmosphere teleconnection of the
El Nifio Southern Oscillation (ENSO) (Qian et al., 2020; Sazib et al., 2020; Cao et al., 2023). During
the last decade, several studies have highlighted the importance of the ENSO phenomenon and its
phases, which are called El Nifio/Neutral/La Nifia (EN/N/LN), as indicators of crop yield variability
in several regions in Mexico (Blanco-Macias et al., 2020; Bojérquez-Serrano, 2020; Ramirez-Gil,
2020; Velasco-Hernandez et al., 2021).

EN/LN phases have been widely used in the assessment of climate variability and have been
helpful in most of Mexico. The dominant trends observed at the global and regional levels were
a decrease in yields of most crops, mainly attributed to temperature and precipitation (Zipper et
al., 2016; Yadav et al., 2021).

Crop yield has been commonly predicted by relating historical yield to different variables, such as
climatic, physiological, and socioeconomic variables (Kucharik and Serbin, 2008). For example,
yield variability has been examined by using temperature and precipitation, which are employed
as the main climatic variables for yield prediction, providing valuable information about growing
conditions (Siebert et al., 2017).

Most studies on agricultural yield prediction have relied on relatively short historical records, usually
30 to 40 years, rather than employing longer time series exceeding 100 years. Using more extended
periods can be advantageous for analyzing how crops respond to various climatic conditions,
such as extreme events (eg., droughts), gradual changes in temperature and precipitation, and
socioeconomic variations (such as fluctuations in regional prices or polices).

Nevertheless, working with long time series may involve assuming that the response of crops to
climate change is stationary; that is, that it does not vary over time. This assumption might not be
valid, as plants can adapt, either naturally or through technological advances, to changes such as
rising temperatures. Due to the above, it is crucial to evaluate yield prediction models considering
different periods and lengths of data to properly incorporate these factors (Rezaei et al., 2023).

Therefore, the objectives of this work were: 1) to identify the historical indices of ENSO from 1980
to 2014 to obtain a model of analogous SS cycles from 2015 to 2023; 2) to directly relate analogous
SS cycles to historical yields in grain corn and bean crops, to simulate 2015-2023 yields; 3) to adjust
the simulations based on the absolute deviation and trend detected in both crops to determine the
simulated yields with the aforementioned adjustments and 4) to evaluate the adjusted simulated
yields against what was recorded.

Evaluating the results helps to make accurate yield forecasts and further improve our
understanding of the impacts of climate teleconnections on the sustainability of agricultural
systems (Najafi et al., 2018).

Materials and methods

Study area

The study area is in Mexico, with a territory of 1 943 945 km?, located in the south of North America
between the Pacific and the Atlantic-Gulf of Mexico oceans (Figure 1). Mexico, due to its location
between North and Central America, is a region that, thanks to its rugged topography, presents
diverse climates and microclimates. Large-scale climate is modulated by several mechanisms,
such as the associated transport of moisture from both oceans.
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Figure 1. Geographic location of Mexico in North America.

In the region, drought is the climatic phenomenon that has the most negative impact on the
population that depends mainly on rainfed agriculture for its livelihood. Therefore, it is worrying that
climate change has caused uncertainty in the future suitability of these lands for traditional crops
(Conde et al., 2006).

Database

The yields of rainfed grain corn and beans were taken from the SIAP database (https://www.gob.mx/
agricultura/dgsiap/acciones-y-programas/produccion-agricola-33119) for the spring-summer (SS)
cycles from 1980 to 2023, which are official data from the Secretariat of Agriculture and Rural
Development (SADER, for its acronym in Spanish) in Mexico. The data were reported in t ha™ at
the national level.
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In the case of the ENSO database, the historical temperatures of region 3.4 (ENSO 3.4) were used,
which were downloaded from the web repository: https://www.cpc.ncep.noaa.gov/data/indices/
ersst5.nino.mth.91-20.ascii. Monthly temperature data (March-September) in degrees Celsius (°C)
for the period 1980-2023 were selected.

Development of the analogous SS cycle model

The analogous SS cycle model consisted of the Pearson (r) correlation of the monthly temperature
of ENSO3.4 during the 1980-2014 SS cycles with the monthly temperature of ENSO3.4 for each of
the 2015-2023 SS cycles. It is worth mentioning that these last nine SS cycles, approximately 20%
of the total data, were chosen because they were later used as SS cycles to test corn and bean
yields, based on the yields of the training SS cycles (1980-2014).

For the first SS cycle analogous to ENSO (2015), the seven-month block of the 2015 SS cycle was
correlated with the seven-month block of the 1980 SS cycle, and so on until the last correlation with
the 2014 SS cycle. Then, the second cycle (2016) was continued, following the same procedure as
before, until the last cycle (2023) was completed. For each SS cycle analogous to ENSO, that is,
for the years 2015-2023, those years where there was a strong correlation (r( 0.8) were identified.

The information from the years analogous to the ENSO for the 2015-2023 cycles was used to
extract the rainfed corn and bean yields (1980-2014 training cycles), and they were used to make
assemblies (arithmetic average of yields of analogous SS cycles), to obtain the simulations of the
agricultural yields of rainfed corn and beans from 2015 to 2023 (test cycles).

Adjustment to simulated yields

In addition to the analogous vyield simulations (SA) performed for the test SS cycles,
different adjustment alternatives were developed and compared: a) Simulation+Deviation. For
both crops, the simulations of each of the test SS cycles were compared against the records
and their deviation was calculated:

D=(%%;)

1). Where: D= is the deviation of the simulation year % against the recorded year x, for corn or
beans; i= represents the years from 2015 to 2023.

The result of each deviation was added to the following test year in order to have a forecast; for
example, DAy was the first, which was calculated with the deviation of what was simulated with
the record of the previous SS cycle (Ejg1s):

D Ai=Ai+Di_ 1

2). Where: DAi= is the adjustment by the deviation simulation method and A= is the assembly of the
years analogous to the test cycle in question (i). b) Simulation+trend. Due to technological advances
in yield increases (non-stationary series), the significance of the trend was verified through the non-
parametric Mann-Kendall test, and Sen’s slopes were extracted.

The significant trends were calculated in a stepwise manner to obtain the slope increment value
(increments per year for both crops) and integrated into the next SS cycle; for example, the Mann-
Kendall test for 1980-2015 was performed to be integrated to 2016, similar to what was done with
the deviation method: MKA;= SA, + SL.; 3). Where: MKAI= is the adjustment by the Mann-Kendall
method and SL;;,= is Sen’s slope (increase or decrease in yields for each year of analysis) of
the previous cycle. ¢) Simulation+deviation+trend. Finally, this last method integrates the last two
options for adjusting the yields of rainfed corn and bean crops to be analyzed: DA+MKA, 5).
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Evaluation of simulations vs. records

It is worth mentioning that the nine simulations to be evaluated (2015-2023) were reduced to eight
(2016-2023) because, when using the adjustment methods, information from the previous year was
used. Metrics were determined to quantify the magnitude of the errors of the initial simulations and
simulations with each of the adjustment methods to the simulated or test SS cycles (2016-2023)
for each of the crops.

To this end, MAE metrics were calculated in all simulations or test SS cycles (2016-2023):

1 n
MAEm=17Y, _ |AcFel

6). Where: MAE, = is the mean absolute error of the method (m) in question for each crop; A=
is the actual yield and F=is the simulated yield. Likewise, the mean absolute percentage errors
(MAPE) were calculated based on the MAE, dividing it by the average of the actual yield (A,) in the
SS cycles from 2016 to 2023:

1

At'Ft
MAPE,=5 —t

A

t=1

7). Where: MAPE, = is the mean absolute percentage error for rainfed corn or beans of each of the
proposed adjustment methods for the test SS cycles (2016-2023) (Figure 2).
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Figure 2. Procedure for obtaining simulations of agricultural yields for corn and beans (2015-2023) with their
corresponding adjustment methods and evaluations.

Results and discussion

Analogous SS cycles

Figure 3 shows the analogous SS years or cycles identified for the test years. Three to 23 analogous
SS cycles are identified in the simulated years, with the lowest in 2015. This is very likely given that
a very intense El Nifio was recorded for that cycle (Zhai et al., 2016); therefore, few historical years
since 1980 have had such magnitude.
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Figure 3. Analogous SS cycles (y-axis) of the test years 2015-2023 (x-axis).

On the other hand, in the rest of the SS cycles, a significant number of analogous years are recorded
(up to 23 years in 2019), which were mostly found in the N phase of the ENSO phenomenon, which
is similar to what was identified by Gonzalez-Gonzalez and Corrales-Suastegui (2024). The ENSO
phenomenon is an important modulator of climate variability at the global level and hence affects
rainfed agricultural yields; however, there are other phenomena or climatic teleconnections to be
considered, especially for Mexico (Llanes-Céardenas, 2020).

Among these are the North Atlantic Oscillation (NAO) and the Pacific Decadal Oscillation
(PDO), which also influence precipitation and temperature patterns in the region. In
addition, climate variability in Mexico is strongly associated with tropical cyclone activity and the
interaction between the Pacific and Atlantic oceans, which can exacerbate droughts or floods in
different areas of the country.

Simulated yields for corn and beans

The assemblies of rainfed grain corn yields were around 2 t ha™, with a maximum of 2 610 t ha™
for the years 2020, 2021 and 2022 and a minimum of 1 390 t ha™ in 2016, whereas the standard
deviations of the analogous SS cycles for each simulation year were between 200 and 300 kg ha™
(Table 1a). In the case of rainfed beans, the assemblies of the simulated yields were around 500
kg ha™*, with a maximum of 570 kg ha™ and a minimum of 465 kg ha™, while the standard deviations
of the analogous SS cycles for each simulation year were around 100 kg ha™ (Table 1b).
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Table 1. Descriptive statistics of the 2015-2023 yield simulations for corn (a) and beans (b).
2015 2016 2017 2018 2019 2020 2021 2022 2023
(a)
Aver 2.013 1.989 1.898 1.913 1.973 2.026 1.961 2.027 2.205
Max 2.18 2.3 2.34 2.42 2.56 2.61 2.61 2.61 2.5
Min 1.78 1.39 1.52 1.48 1.52 1.39 1.48 1.52 1.78
Dev 0.208 0.29 0.246 0.336 0.294 0.347 0.335 0.343 0.226
(b)
Aver 0.57 0.465 0.479 0.512 0.484 0.485 0.489 0.495 0.56
Max 0.67 0.61 0.63 0.67 0.63 0.61 0.63 0.63 0.67
Min 0.37 0.32 0.36 0.26 0.36 0.32 0.26 0.37 0.37
Dev 0.173 0.095 0.072 0.129 0.072 0.083 0.089 0.071 0.096

There was a greater amplitude in the yields of the analogous SS cycles used for beans compared
to corn, due to the erratic precipitation conditions where the largest rainfed bean-growing areas are
located (north-central Mexico), since droughts are a factor that limits the development of the crop
(Acosta-Diaz et al., 2011).

Deviations in simulations and trends in the records

Deviations of the simulated yields show an underestimation in all years for corn and beans;
nevertheless, for beans, there are overestimations in 2015, 2020 and 2022 (Figure 4). The
deviations are around 500 kg ha™ in the case of corn and around 65 kg ha™ for rainfed
beans. Underestimations in yields are characteristic of average or regression methods (Gonzéalez-
Gonzélez and Guertin, 2021).

Figure 4. Difference between simulated and observed yields of rainfed corn (a) and beans (b).

As for the Mann-Kendall test, significant positive trends are shown in the records of both crops;
it is notably stronger in corn (Tau= ~0.7 and p-value# 0.05) compared to beans (Tau~ 0.3 and p-
value# 0.05) (Table 2). In the case of corn, an annual trend of 24 to 26 kg ha™ and 3 to 4 kg ha™
was observed for beans (Table 2).
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Table 2. Identification of significant trends (p- value) and slopes (SEN’s slope) of historical rainfed corn (a) and bean
(b) yields for each of the test SS cycles (2015-2022), using the Mann-Kendall test.
a)
SScycles Tau p-value Sen’s slope
1980-2015 0.711 1.23E-09 0.024
1980-2016 0.727 1 0.024
1980-2017 0.741 6.74E-11 0.025
1980-2018 0.752 1.88E-11 0.025
1980-2019 0.764 4.45E-12 0.026
1980-2020 0.771 1.47E-12 0.026
1980-2021 0.78 4.12E-13 0.026
1980-2022 0.788 1.16E-13 0.026
1980-2023
(b)

SS cycles Tau p-value Sen’s slope
1980-2015 0.332 0.005 0.004
1980-2016 0.346 0.003 0.004
1980-2017 0.362 0.002 0.004
1980-2018 0.377 0.001 0.004
1980-2019 0.373 0.001 0.004
1980-2020 0.347 0.002 0.004
1980-2021 0.37 0.001 0.004
1980-2022 0.34 0.002 0.003
1980-2023

A positive trend is detected due to technological advances, especially in the yields of global wheat,
rice and corn crops (FAO, 2017). In the case of rainfed beans, this study apparently shows that
their technological progress has been lower, perhaps because the breeds respond differently to
drought conditions (Beebe et al., 2013 ).

Adjustments to simulations and evaluations of corn and bean yields

For rainfed corn, the adjustment of the simulated yields with the deviation of the previous SS cycle
shows a substantial improvement in the yield estimate, as does the incorporation of the trend along
with the deviation. On the other hand, the use of the trend alone shows the least certainty (Figure
5a). The results of the corn yield model simulation evaluations are comparable to the overall work
by Reyes-Gonzalez et al. (2021) and slightly better than those by Garcia-Montesinos et al. (2020)
in southern Mexico. In the case of beans, in the adjustment to the simulated, greater certainty is
observed with the deviation and the deviation and trend together, and less certainty with the use of
the trend alone, similar to what was found for corn (Figure 5b).
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Figure 5. Records, simulations, and simulations with adjustments to yields for rainfed corn (a) and beans (b) with
the different methods proposed during the test SS cycles (2015-2023).

For corn, MAPE values are 22% in simulation and simulation along with trend, while they are only
4% using deviation and deviation along with trend (Figure 6a). On the other hand, in beans, a similar
MAPE is observed in all methods (from 11% to 14%), but with a better fit with the use of the trend
alone (11%) (Figure 6b). The evaluations of beans in this study are similar to those provided by
Servin-Palestina et al. (2022); Flores-Gallardo et al. (2024), although on a smaller scale for the
states of Durango and Zacatecas.

Figure 6. Mean percentage error (MAPE) for 2016-2023 for each of the methods of adjustment to the simulations
for rainfed corn (a) and beans (b): SA= simulations without adjustment; DA= simulations with deviation
adjustment; MKA= simulations with trend adjustment; DA+MKA= simulations with deviation and trend
adjustments.
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Conclusions

This study presented a moderately accurate simulation of the agricultural yields of rainfed corn and
beans with the ENSO phenomenon. Nonetheless, by integrating deviation and trend techniques
into the simulations, it is possible to increase their certainty. Regarding the simulated yields, the
calculated deviations indicated a generalized underestimation in the yield of both crops, where corn
showed greater stability compared to beans, which presented a greater amplitude in their yields,
due, most likely, to the drought conditions in the bean-growing areas of north-central Mexico.

Adjustments to the simulations showed that adding the deviation of the previous spring-summer
cycles substantially improved the accuracy of the estimates, for both corn and beans. However, the
exclusive use of the trend in the previous spring-summer cycle showed lower certainty in the case
of corn crops, underscoring the importance of analyzing and assessing both deviations and trends
in projections for the agricultural crops in question.

For yield estimates in subsequent cycles, it is essential to use accurate monthly temperature data
projections from ENSO and agricultural censuses updated to the immediately preceding cycle to
be forecasted. It would also be important to analyze and include other climatic teleconnections for
future work of this nature. These advances made it possible to optimize agricultural planning for
rainfed crops in Mexico, with the potential for extrapolation to other regions of the world.
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