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Abstract
Phytopathogenic fungi pose a considerable threat to cucurbit crops, so early detection and accurate
quantification of diseases are essential to reduce production losses. In this study, a methodology
was developed to quantitatively estimate the damage caused by Podosphaera xanthii in cucumber
leaves, using digital images and machine learning techniques. Convolutional neural networks were
used to visually classify the degree of severity into six predefined categories, using sections of
leaves with apparent symptoms of the fungus. Additionally, four supervised classification algorithms
were trained and compared: K-NN, decision trees, random forests, and neural networks. The
model that obtained the best performance was the random forest model, with an accuracy of 90%,
whereas K-NN reached the lowest value (79%). These results position the model as a helpful tool for
automated disease monitoring in the field, facilitating phytosanitary decision-making. In addition, the
methodology provides a solid foundation for researchers interested in designing and implementing
automatic plant disease classification systems, providing clear information on the performance of
different classification architectures. The algorithm developed in R allows this solution to be adapted
and scaled to different cultivation conditions and types of foliar diseases.
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Introducon
Powdery mildew, caused by fungi such as Golovinomyces cichoracearum, Erysiphe cichoracearum,
Sphaerotheca fuliginea, Podosphaera xanthii and Podosphaera fusca (Mohamed et al., 1995;
Morejón et al., 2010), is a widely distributed disease that seriously compromises the quality and yield
of cucumber crops, generating significant economic losses (Sun et al., 2022). This phytopathology
initially manifests itself as a whitish coloration that changes to creamy-yellow spots, mainly affecting
the leaves (Rocha et al., 2023).

Given its impact, early and accurate detection is essential for timely management; this directly
contributes to food security (Kaushik et al., 2023). In this context, artificial intelligence (AI) offers
valuable tools to improve agricultural systems and the economy of farmers. Common supervised
classification techniques include logistic regression, discriminant analysis, K-NN, neural networks,
decision trees and random forests (Zapata et al., 2014; Paymode and Malode, 2022).

Automated plant disease estimation streamlines monitoring in large crops and enables early
detection of symptoms. Different machine learning algorithms generate varying results, so it is
crucial to identify the most suitable one for each specific problem. The K-NN technique is based on
the proximity of similar objects in the feature space (Zhao and Yang, 2023).

Another method currently used is that of decision trees, based on observations and logic, which
represent and categorize successive conditions for solving problems (Ramos et al., 2023). Likewise,
Pacciorett et al. (2020) report that the random forest (RF) classification method is a regression
model that uses sampling to construct multiple regression trees and assembles them to achieve
a predictive model.

It is worth mentioning that among the most used classification models was the neural network
classification (CNN), which consists of computational classification models that offer solutions and
validation of sequences in pattern recognition as an extension of classical statistical methods
(Hassoun and Threshold, 1995). This method was adapted to the demands of the environment,
since it can combine techniques that process information in parallel (Figueredo y Ballesteros, 2016).

The objective was to develop a tool for the automated estimation of leaf damage caused by P.
xanthii in cucumber leaves, using digital images and machine learning techniques. A methodology
based on convolutional neural networks (CNN), decision trees, random forests (RF) and K-NN was
proposed in order to compare their performance in classifying disease severity.

Materials and methods

Plant material
The plant material was obtained from a commercial plot of French cucumber that is five years
old. A parthenocarpic variety has been exclusively cultivated in this plot, and the manifestation of
symptoms associated with Podosphaera xanthii has been observed in all production cycles.

Idenficaon of the microorganism
The microorganism was identified by preparing samples on slides from the leaf lesions. The
observed morphology was contrasted with the descriptions published in the taxonomic manual
of Erysiphaceae (Braun and Cook, 2012) and with the characterization provided by Cipriano and
González (2022) (Figure 1).
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Figure 1. a) ovoid conidia of P. xanthii seen under a microscope and b) chain conidia of P. xanthii.

Training data
For the analysis, random images were taken, and sections of leaves that exhibited obvious
symptoms of the fungus were extracted. These segments were unified to create a 5 580 000-pixel
image, which captured the distinctive features of the affected leaves. Similarly, the same process
was performed to obtain a control image, cutting out areas of leaves with no visible signs of the
disease (Figure 2).
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Figure 2. Set of images intended for training. a) Image with symptoms of the fungus and b) Image without 
symptoms of the fungus.

In order to avoid bias in the training of the classification models, the dataset was balanced by
selecting an equivalent number of pixels from both classes (healthy and diseased). This balance
was achieved by uniform random sampling, ensuring each class was represented by the same
number of pixels in the training set.

Processing of sample images. In order to train and validate the machine learning models, the
segmented images were grouped into three datasets, each with a different number of pixels: 4 464
000; 3 348 000 and 2 232 000. A stratified partition scheme was applied to each set, where 70% of
the pixels were used for training and the remaining 30% for validation and testing.

This proportion ensured a balanced distribution that allowed the model to generalize without
overfitting the input data. As shown in Figure 3, the total number of pixels used exclusively for
training was 7 030 800, distributed as follows: 3 124 800 pixels from the first set, 2 343 600 from
the second and 1 562 400 from the third.
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Figure 3. Process of training and validaon data paroning for the detecon of symptoms caused by the fungus.

Training of machine learning systems. Training data were used to generate machine 
learning models (K-NN, decision trees, random forests, and neural networks) in order to classify 
pixels as ‘healthy’ or ‘sick’. For training, the most common hyperparameters reported in the 
literature were considered (Table 1). The input data for the models was the values of the RGB 
channels of each pixel.

Table 1. Hyperparameters reported in the literature for different machine learning techniques.

Classification model Hyperparameter Reference

Best neighbor K-NN Number of neighbors (K) Zhang et al. (2019)

Decision tree The depth Number of

observations at each node

Demirovi’c and Stuckey (2021)

Random forests (RF) Number of trees Benali et al. (2019)

Neuronal networks (CNN) Layer depth Number of

layers Activation function

Ma et al. (2018)

After fitting the machine learning models, a confusion matrix was generated (Table 2).
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Table 2. A confusion matrix used to calculate the metrics of machine learning models.

Class estimated by the modelClass observed

Healthy Sick

Healthy True positive (TP) False positive (FP)

Sick False negative (FN) True negative (TN)

The above data were used to calculate the accuracy using the following formula:

.

In all cases, calculated accuracy was reported for validation data only.

Image processing for severity calculaon
To carry out the segmentation, the images were transformed into the HSV color space.
Subsequently, the thresholding method (Otsu, 1978) was applied to generate a binary image, which
was multiplied by each of the RGB channels of the original image. This procedure allowed us to
obtain a segmented image, which was later used as input for the classification system (Figure 4).

Figure 4. Methodology of preprocessing and processing of cucumber leaves to esmate the severity 
of the fungus P. xanthii.

At the same time, each image was labeled with one of the six visual severity classes 
previously defined, Mohamed et al. (1995) and modified by Hernandez et al. (2007), which 
corresponded to different ranges of percentage of foliar damage (0%, 10-29%, 30-49%, 
50-69%, 70-89%, 90-100%)(Figure 5). Fifty images were selected per class, resulting in a 
balanced dataset for training and testing.
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Figure 5. Severity scale used to classify P. xanthii damage in cucumber leaves visually.

Results and discussion
K-best neighbor (K-NN). Figure 6 showed the maximum accuracy of 0.85, with a slight tendency to
decrease when the number of data used as predictors (neighbors) increased. Despite using from
40% to 100% of the population, this variable did not significantly affect the model’s accuracy.

Figure 6. Accuracy of K-NN models for P. xanthii esmaon.
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Cruz et al. (2020) findings used the K-NN method because of its success in agricultural 
studies to accelerate disease detection. This research was conducted with images of selected 
cucumber leaves with and without disease in order to classify the pixels; according to 
Guaillazaca and Hernández (2020), they used this classification model to obtain a code that 
would allow them to identify three variables of identification (good product, regular product, bad 
product) by colors and forms.

The best neighbor technique is widely used to classify foliar diseases with high accuracy (Sarkar 
et al., 2023). There are works that use this algorithm and have achieved an accuracy of 0.9 using 
color and texture parameters (Zhang and Wallace, 2015); in this analysis, an accuracy of 0.85 
was obtained. One of the main problems in training machine learning models is the optimization 
of hyperparameters (Ghawi and Pfeffer, 2019) because in K-NN models, the class estimation is 
based on the Euclidean distance between the closest observations, and the number of observations 
affects the final accuracy of the model (Torgo, 2014).

In this research, approximately 10 data points were used to estimate the class of each of the 
sample data. Suganya et al. (2020) used this same technique, with an accuracy greater than 0.9; 
however, the images they used in training the model were taken under controlled lighting conditions. 
In contrast, in this work, the training images were obtained directly in the field, which generated a 
decrease in the accuracy of the model due to the highly variable lighting conditions.

Decision tree. The accuracy in the validation tests was 0.79 when 80% of the data was used; it could 
also be observed that as the size of the population increased, the accuracy increased. One of the 
hyperparameters that significantly influenced the accuracy of the model is the number of branches 
(Fernández, 2023). In the present research, it was observed that accuracy did not improve when 
increasing this parameter beyond seven branches (Figure 7); this behavior is consistent with what 
was reported by Ramos (2020), who used five branches and obtained an accuracy of 0.84.

Figure 7. Effect of classificaon tree size on model accuracy for P. xanthii esmaon.

In this regard, Olivares et al. (2021) used random forests to determine the development of the
incidence of banana wilt, obtaining an accuracy of 0.74, so they did not consider it an efficient model.
The main disadvantage of this method is the high computational cost required for its implementation
(Alaminos, 2023).
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In this research, the symptoms visible in cucumber leaves caused changes in the value of the
RGB channels, compared to the values present in normal leaves, which were used by the model
to classify the pixels (Figure 8); these results coincide with Velázquez et al. (2011), who report
that powdery mildew in rose can be detected through the color space with images taken at a close
distance for better accuracy.

Figure 8. Representaon of the decision rules generated by the random forest algorithm, for the classificaon of 
healthy cucumber leaves and leaves with the presence of disease.

The results obtained show that the random forest model allowed us to achieve a satisfactory
classification of the classes analyzed. This approach has previously been used by various
researchers in data analysis (Flores et al., 2016) due to its ability to adapt to different types and
scales of databases. Its main advantage lies in the fact that it does not require assuming a normal
distribution and offers remarkable flexibility to model nonlinear relationships between predictor
variables and target classes.

Random forests. The number of trees and the percentage of the population used in the training
data affected the accuracy of the model (Figure 9); the highest values were obtained when 80%
of the population was used to train the model. In general, the accuracy did not increase after 100
trees, with which a maximum accuracy of 0.9 was achieved.
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Figure 9. Effect of the number of trees on the accuracy of a model of random forests with different 
populaon proporons.

This machine learning method is based on the use of groups of random trees to estimate the class
to which the data belongs; therefore, the number of trees is considered as an important control
parameter that significantly affects the final accuracy with which each class is estimated (Sujatha
et al., 2021); this coincides with what was reported in this analysis, in which the accuracy increased
until it remained stable despite increasing the number of trees used.

Other authors have used random forests to find nonlinear relationships between variables to detect
diseases in plants employing images; for example, Wójtowicz et al. (2021) used training data to
generate a model based on random forests, obtaining success rates above 90%, which is similar
to what is reported in this work.

Neural networks
The neural network structure that showed the highest accuracy values was when three hidden
layers were used, with two neurons each, using 80% of the total available population (Figure 10).
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Figure 10. Structure of the neural network used for esmaon.

Neural networks have been widely used in disease detection; for example, Ma et al. (2018); Larijani
et al. (2019) used this technique to detect diseases in rice leaves using the Lab color values as input
variables; in the present study, the RGB color space was used, so a conversion was not necessary.
Other authors, Sujatha et al. (2021), used different neural network architectures to detect viruses
in plants with an accuracy greater than 0.95, which is much higher than the accuracy reported in
this work using the same technique (neural networks); nevertheless, the symptoms produced by
viruses are a very accentuated chlorosis that is relatively easy to detect using models based on
color changes.

In the specific case of cucumbers, Zhang et al. (2019) tested different systems based on neural
networks to identify different diseases in cucumber leaves based on a set of images under relatively
controlled conditions, with accuracies greater than 0.95 and with training times of 6 and 14 h. In
this research, training times of between 60 and 85 min were obtained, but the number of classes
was significantly lower, so less processing power was required.

The preprocessing of the images and the obtaining from the training data is one of the factors
that most affects the performance of the mathematical models (Li et al., 2022); in the case of the
images used as the basis to generate the training dataset of this work, they were obtained under
uncontrolled conditions, which generated a great diversity of conditions in color and shape of those
parts of the image that did not represented the leaf.

Of all the machine learning methods tested in this study, it was the random forest method that
showed the highest accuracy value, so this model was used to compare the relationship between
human classification of plants using a hedonic scale and the severity reported by the model. The
results showed that there was a relationship between the class given by a person using a hedonic
scale and severity (Figure 11).
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Figure 11. Comparison of esmated hedonic scale of P. xanthii and severity using the random forest 
classificaon model.

Conclusions
It is demonstrated that machine learning algorithms are an effective tool for high-precision
estimation of the severity of leaf damage caused by Podosphaera xanthii in cucumber leaves. In
particular, the model based on random forests achieved an accuracy of 90%, standing out for its
generalizability and its robustness against variable lighting and capture conditions in the field. This
automated approach represents a viable alternative to the traditional visual assessment method,
bringing objectivity, reproducibility, and efficiency to phytosanitary monitoring.

The validation of the model using a hedonic scale reveals a significant correspondence between
computational predictions and human assessments, which supports its practical application in
integrated disease management programs. Based on these findings, several future lines of work
are proposed. It is recommended to expand the dataset to improve the generalizability of the
model, incorporating images of different cucumber varieties, diverse phenological phases, and
heterogeneous environmental conditions.

Likewise, the integration of the model into mobile platforms will allow real-time diagnostics to be
carried out, directly in the agricultural environment. These actions could significantly contribute to
the adoption of artificial intelligence technologies in precision agriculture, improving timely disease
detection and decision-making in the field.
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