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Abstract
This study aimed to evaluate the performance of four durum wheat cultivars Odysseo, Saragola,
Irid and Maestrale using two machine learning techniques: classification and regression trees and
random trees. Classification tree and regression analysis showed that mean annual temperature is
the dominant factor influencing yield in all cultivars. For the Saragola, Irid and Maestrale cultivars,
yield increased significantly when the mean annual temperature exceeded 17.25 °C, particularly
when emergence density was optimal. In contrast, the Odysseo cultivar showed sensitivity to both
average annual temperature and seeds per spike, with higher yields associated with an average
annual temperature above 17.25 °C and seeds per spike above 33.6. The random tree analysis
confirmed the importance of average annual temperature and emergence density, highlighting
their strong predictive power. The models provided greater robustness and generalizability by
reducing prediction variance, making them reliable tools for yield prediction. These findings highlight
cultivar-specific responses to agroclimatic conditions, with Odysseo influenced by both mean
annual temperature and seeds per ear, while Saragola, Irid and Maestrale demonstrate a critical
interaction between mean annual temperature and emergence density. Integrating random tree
models improves prediction accuracy and provides valuable information for developing precision
agriculture strategies tailored to environmental conditions.
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Introducon
Wheat (Triticum durum) is a staple crop of global importance, with its production significantly
influenced by agroclimatic factors (Martínez-Moreno et al., 2022). Understanding the relationship
between environmental conditions and yield is essential for improving productivity and ensuring
food security, especially in the face of climate variability (Shewry et al., 2015). Key factors such
as annual average temperature (AAT), precipitation, plant density, and seed characteristics play a
crucial role in determining wheat yield (Kang et al., 2020).

Traditional statistical methods, such as linear regression and generalized linear models, have been
widely used to predict crop yields. However, these approaches often fall short in capturing complex,
nonlinear relationships between multiple variables (Sharma et al., 2021). Recent advances in
machine learning (ML) provide more robust and adaptable models for analyzing such interactions.
Decision tree-based models, including Classification and Regression Trees (C RT) and Random
Forests (RF), are particularly well-suited for agricultural applications due to their ability to handle
nonlinear relationships and rank variable importance (Breiman, 2001; Sarker et al., 2020).

Despite the increasing use of ML models in agriculture, limited studies have focused on the
comparative performance of C RT and RF for predicting wheat yield across multiple varieties. This
study aims to address this gap by evaluating the predictive accuracy of these models for four wheat
varieties, identifying the most influential agroclimatic factors, and establishing decision rules for
yield optimization.

Material and methods

Source material and experimental treatments
Four durum wheat cultivars (Odysseo, Saragola, Irid and Maestrale) were selected for this
study based on their agronomic performance and adaptability. These cultivars are commercially
recognized for their high yield potential, grain quality and stress tolerance (De Vita et al., 2007;
Kabbaj et al., 2017). Field experiments were conducted during the 2020 growing season across
three different agroclimatic zones in Algeria: Annaba (Annaba), Coastal region with a humid
Mediterranean climate; Ouled Rahmoune (Constantine), Semi-arid region with moderate rainfall;
Oued Zenati (Guelma), Dry region with limited water availability.

Each experimental site covered an area of 2 500 m2, and the trials were conducted using a
randomized complete block design (RCBD) with three replications per cultivar. A seeding rate of
200 kg ha-1 was employed to achieve adequate plant density, promoting uniform emergence and
crop establishment. Basal fertilization was carried out using monoammonium phosphate (MAP)
applied at a rate of 150 kg ha-1 to provide essential nutrients for early growth. Additionally, crop
protection measures included the application of fungicidal treatments such as Celest Xtra and
Amistar Xtra, along with Acil, to safeguard the wheat plants against potential diseases and enhance
crop performance.

Data collecon
Agroclimatic and agronomic data were collected throughout the growing season, including annual
average temperature (AAT) (°C), altitude, annual total precipitation (ATP) (mm), seeds per spike
(count), emergence density (plants m-2), spike m-2 (count), tiller per plant (count), thousand-kernel
weight TKW (g), and practical wheat yield (q ha-1), used as the target variable. Meteorological data
were obtained from the National Meteorological Office (Algeria), while agronomic parameters were
measured following standardized field and laboratory procedures (Blum, 2011; Joia et al., 2025).
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Predicve modeling approaches
Two machine-learning approaches were applied using IBM SPSS Modeler 18.0 to predict wheat 
yield: Classification and regression trees (C RT), a decision tree-based model that partitions 
data into homogeneous subsets based on the most significant variables (Breiman et al., 
1984); and Random trees regression (RT), an ensemble learning method that enhances 
predictive accuracy by averaging multiple decision trees (Liaw and Wiener, 2002). Model 
performance was assessed using root square error (RMSE), relative error (RE) and explained 
variance (EV) (Chlingaryan et al., 2018).

Variable importance and decision tree interpretaon
Feature importance was evaluated using Gini impurity (C RT) and permutation importance (RT). The 
generated decision trees were analyzed for each wheat cultivar to identify key thresholds influencing 
wheat yield (Hastie et al., 2009).

Results

Agronomic performance of durum wheat culvars
Results highlight significant variability in the agronomic performance of the four durum 
wheat cultivars across three distinct localities (Table 1). This variability is primarily 
attributed to environmental factors, particularly climatic conditions and agronomic practices, 
which are known to influence growth, yield and phenotypic traits of wheat cultivars (Kabbaj et 
al., 2017; Royo et al., 2020).

Table 1. Agronomic performance of durum wheat culvars.

Locality Cultivar Emergence

density

(plants m-2)

Tillers per plant Spikes m-2 Seeds

per spike

TKW (g) Practical

Yield (q ha-1)

Ir#d 280.5 ±6.36 3 ±0 392 ±4.24 35.4 ±1.56 47.5 ±0.71 51.5 ±4.95

Maestrale 269.5 ±6.36 3 ±0 380 ±7.07 35.1 ±2.69 48 ±1.41 51.5 ±3.54

Odysseo 282 ±0 3 ±0 395 ±0 33.6 ±3.39 49.5 ±0.71 52.5 ±4.95

Annaba

(Annaba)

Saragola 276 ±4.24 3 ±0 387 ±7.07 33.5 ±2.12 48.5 ±0.71 54 ±5.66

Ir#d 287 ±0 3.8 ±0 563 ±0 38.5 ±0 51 ±0 35 ±3.25

Maestrale 292 ±0 4.6 ±0 612 ±0 39.65 ±0 50.25 ±0 35 ±3.75

Odysseo 284 ±0 3.75 ±0 526 ±0 37.75 ±0 49.6 ±0 28 ±2.4

Ouled

Rahmoune

(Canstantine)

Saragola 278 ±0 3.86 ±0 535 ±0 36.5 ±0 49.85 ±0 27.9 ±3.39

Ir#d 298 ±0 5 ±0 665 ±0 35.75 ±0 49.7 ±0 31.5 ±3.96

Maestrale 297 ±0 5 ±0 789 ±0 36.5 ±0 48.3 ±0 40 ±4.81

Odysseo 289 ±0 6 ±0 703 ±0 39.5 ±0 48.3 ±0 40 ±3.68

Oued Znati

(Guelma)

Saragola 292 ±0 5 ±0 664 ±0 37.25 ±0 51 ±0 41.5 ±4.67

In Annaba, practical yields were highest for Saragola (54 ±5.66 q ha-1), which is consistent with
findings from previous studies indicating that this cultivar exhibits good adaptation to moderate
conditions, particularly when temperature and soil moisture are adequate (Csépl# et al., 2024). The
TKW values for Odysseo (49.5 ±0.71 g) and IRID (47.5 ±0.71 g) suggest good grain filling potential,
which is a desirable trait for yield improvement (Maccaferri et al., 2011).

The Ouled Rahmoune locality demonstrated increased tillering and spike density across all
cultivars, with Maestrale achieving the highest emergence density (292 ±0 plants m-2) and tillering
rate (4.6 ±0 tillers per plant). This phenomenon can be attributed to favorable soil conditions that
likely promoted tiller formation and spike emergence, as supported by Kabbaj et al. (2017), who
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reported that improved soil fertility enhances tiller production and consequently increases 
yield. However, practical yields were lower compared to Annaba, with Odysseo and Saragola 
recording the lowest yields (28 ±2.4 q ha-1 and 27.9 ±3.39 q ha-1, respectively). This 
suggests that yield potential may not solely depend on spike density but also on grain filling 
efficiency, which may have been compromised by suboptimal climatic conditions during the 
grain-filling period (Royo et al., 2020).

Oued Znati exhibited the highest overall productivity, particularly for the Saragola cultivar, which 
achieved a practical yield of 41.5 ±4.67 q ha-1 with a TKW of 51 ±0 g. This locality also demonstrated 
superior tillering ability and spike density for all cultivars, with Odysseo reaching 703 ±0 spikes m-2 

and 6 ±0 tillers per plant. Moreover, the high TKW values observed in this locality are indicative of 
favorable conditions for grain filling, a critical determinant of yield (Kabbaj et al., 2017).

Performance of the predicve model
The random trees regression model exhibited a strong predictive capability for wheat 
yield estimation, with an explained variance of 70.4%, suggesting that the selected 
agroclimatic and agronomic variables account for a substantial proportion of yield variability. 
The root mean square error (RMSE) was 7.395, indicating a moderate level of deviation 
between predicted and observed values. Furthermore, the relative error of 0.296 suggests a 
fairly reliable model performance (Table 2).

Table 2. Performance metrics of the random trees regression model for praccal wheat yield predicon.

Model parameters Input

Target variable Practical wheat yield

Model generation method Random Trees Regression

Number of predictor #nputs 7

Root mean square error (RMSE) 7.395

Relative error (RE) 0.296

Explained variance (EV) 0.704

These results demonstrate the robustness of machine learning techniques in agricultural yield 
prediction, aligning with previous studies highlighting the effectiveness of decision tree-based 
models for predicting crop responses to environmental factors (Chlingaryan et al., 2018; López-
Granados et al., 2020).

Agroclimac and agronomic factors affecng wheat yield
The C RT analysis revealed that the AAT was the dominant variable influencing yield for the 
Saragola, Irıd, and Maestrale cultivars, with emergence density also playing a significant role. In 
contrast, for the Odysseo cultivar, yield was mainly influenced by AAT and the number of seeds 
per spike.

Odysseo culvar
For Odysseo, the C RT decision tree identified AAT as the primary determinant of yield variation. 
When AAT ≤16.15 °C, the average yield was 28 q ha-1, representing a significant reduction due to 
suboptimal temperature conditions. For an AAT between 16.15 °C and 17.25 °C, yield increased to 
34 q ha-1, showing a positive impact of higher temperatures on grain development. When the AAT 
exceeded 17.25 °C, yield reached 52.5 q ha-1, if the seeds per spike exceeded 33.6. These findings 
suggest that Odysseo cultivar responds favourably to warmer temperatures, with yield improving 
as AAT increases above 17.25 °C. The critical role of seed density further highlights the importance 
of optimizing spike fertility under varying temperature regimes (Figure 1).

DOI: https://doi.org/10.29312/remexca.v17i1.3892 

elocation-id: e3892 4

https://doi.org/10.29312/remexca.v17i1.3892


Figure 1. Regression tree analysis for predicng wheat yield in Odysseo culvar.

Saragola culvar
For Saragola, yield was highly sensitive to AAT and emergence density. When AAT was below
16.15 °C, yield dropped to 38 q ha-1, indicating a negative impact of lower temperatures on grain
filling. When AAT exceeded 16.15 °C and emergence density was optimal, yield increased to
51 q ha-1, demonstrating the combined effect of temperature and agronomic management on
productivity. These results highlight that Saragola cultivar is less tolerant to low temperatures,
requiring warmer conditions for optimal yield expression. This aligns with previous reports on durum
wheat varieties that show reduced grain development under cooler climates (Ferrise et al., 2019)
(Figure 2).

DOI: https://doi.org/10.29312/remexca.v17i1.3892 

elocation-id: e3892 5

https://doi.org/10.29312/remexca.v17i1.3892


Figure 2. Regression tree analysis for predicng wheat yield in Saragola culvar.

Irid culvar
The Irid cultivar decision tree model identified AAT and emergence density as the key yield
determinants. When AAT was below 17.25 °C, yield remained low, suggesting that Irid cultivar
requires higher temperatures for grain development. When AAT exceeded 17.25 °C, yield increased
significantly, particularly when the plant density was high. This behaviour indicates that Irid cultivar
benefits from higher temperatures, but plant density also plays a crucial role in achieving high
productivity. This finding is consistent with studies emphasizing the role of grain weight as a primary
yield component in wheat (Lobell et al., 2017) (Figure 3).
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Figure 3. Regression tree analysis for predicng wheat yield in Irid culvar.

Maestrale culvar
The C RT analysis for Maestrale cultivar indicated a strong dependency on AAT and emergence
density. Yield remained low when AAT was below 17.25 °C, likely due to poor grain filling conditions.
When AAT exceeded 17.25 °C, yield improved significantly, provided that emergence density was
optimal. These results suggest that Maestrale requires both warm temperatures and adequate
emergence density for optimal productivity. The interplay between temperature and plant density is
well documented in wheat physiology, where poor emergence density can exacerbate the negative
effects of suboptimal temperatures (Trnka et al., 2021) (Figure 4).
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Figure 4. Regression tree analysis for predicng wheat yield in Maestale culvar.

Saragola and Irid cultivars are highly dependent on AAT and emergence density, with yield
improving significantly, when AAT exceeds 16.15 °C and 17.25 °C, respectively, and emergence
density is optimal. Maestrale cultivar exhibits similar behaviour to Irid, with yield enhancement linked
to AAT exceeding 17.25 °C and favourable emergence density.

Conclusions
Odysseo cultivar demonstrated greater resilience to temperature fluctuations, particularly benefiting
from higher temperatures. However, its productivity is strongly dependent on high emergence
density, indicating the importance of dense and uniform sowing, especially in warmer regions.

Saragola, Irid, and Maestrale cultivars showed increased sensitivity to both temperature and
emergence density, implying that these varieties require more precise seed rate calibration and
adapted sowing schedules under changing climatic conditions to avoid yield penalties. Practical
recommendations for improving wheat crop management include: 1) tailoring sowing density by
cultivar and expected temperature regime: adopt higher seed rates for Odysseo in warm zones and
fine-tune densities for other cultivars based on predictive emergence models; 2) integrating real-
time agroclimatic data to adjust management practices, particularly in terms of sowing date and field
preparation; and 3) employing site-specific management zones using decision rules derived from
the models to optimize inputs (fertilizer, irrigation) where they will have the greatest effect on yield.

The comparison between C RT and RF models revealed their complementary strengths in
predicting wheat yield and developing actionable decision rules. RF provided robust and
generalizable insights due to its ensemble nature, making it a valuable tool for data-driven
agronomic decision-making. Given the promising results, artificial intelligence (AI) tools, especially
those based on machine learning and ensemble learning algorithms, offer significant potential
for refining yield predictions and supporting adaptive agronomic decisions. AI-driven systems can
dynamically integrate multi-source data (satellite, sensor, weather forecasts) to provide real-time,
site-specific recommendations, fostering the transition toward precision agriculture and climate-
resilient wheat production.
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