
Predicción del rendimiento del trigo para múlples culvares basada en
factores agroclimácos

Hoceme Degaichia1,§

Toua Bakria1

Ahcène Hakem1

1 Centro de Invesgación en Agropastoralismo (CRAPast). Djelfa, Argelia. 

Autor para correspondencia: hoceme.degaichia@crapast.dz.

Resumen
Este estudio tuvo como objetivo evaluar el rendimiento de cuatro cultivares de trigo duro
Odysseo, Saragola, Irid y Maestrale utilizando dos técnicas de aprendizaje automático: árboles
de clasificación y regresión y árboles aleatorios. El análisis de árboles de clasificación y regresión
demostró que la temperatura media anual es el factor dominante que influye en el rendimiento
en todos los cultivares. Para los cultivares Saragola, Irid y Maestrale, el rendimiento aumentó
significativamente cuando la temperatura media anual superó los 17.25 °C, particularmente cuando
la densidad de emergencia era óptima. Por el contrario, el cultivar Odysseo mostró sensibilidad
tanto a la temperatura media anual como a las semillas por espiga, con mayores rendimientos
asociados a una temperatura media anual superior a 17.25 °C y semillas por espiga superiores
a 33.6. El análisis de árboles aleatorios confirmó la importancia de la temperatura media anual y
la densidad de emergencia, destacando su fuerte poder predictivo. Los modelos proporcionaron
una mayor robustez y capacidad de generalización al reducir la varianza de predicción, lo que los
convierte en herramientas fiables para la predicción del rendimiento. Estos hallazgos subrayan
las respuestas específicas de cada cultivar a las condiciones agroclimáticas, donde Odysseo está
influenciado tanto por la temperatura media anual como por las semillas por espiga, mientras que
Saragola, Irid y Maestrale demuestran una interacción crítica entre la temperatura media anual y la
densidad de emergencia. La integración de los modelos de árboles aleatorios mejora la precisión
de la predicción y ofrece información valiosa para el desarrollo de estrategias de agricultura de
precisión adaptadas a las condiciones ambientales.
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Introducción
El trigo (Triticum durum) es un cultivo básico de importancia global, cuya producción está 
significativamente influenciada por factores agroclimáticos (Martínez-Moreno et al., 2022). 
Comprender la relación entre las condiciones ambientales y el rendimiento es esencial para 
mejorar la productividad y garantizar la seguridad alimentaria, especialmente frente a la variabilidad 
climática (Shewry et al., 2015). Factores clave como la temperatura media anual (TMA), la 
precipitación, la densidad de plantas y las características de la semilla juegan un papel crucial en 
la determinación del rendimiento del trigo (Kang et al., 2020).

Los métodos estadísticos tradicionales, como los modelos de regresión lineal y los modelos 
lineales generalizados, se han utilizado ampliamente para predecir los rendimientos de los 
cultivos. No obstante, estos enfoques a menudo no logran capturar relaciones complejas y no 
lineales entre múltiples variables (Sharma et al., 2021). Los avances recientes en aprendizaje 
automático (ML), por sus siglas en inglés proporcionan modelos más robustos y adaptables 
para analizar este tipo de interacciones. Los modelos basados en árboles de decisión, 
incluyendo árboles de clasificación y regresión (C RT) por sus siglas en inglés y bosques 
aleatorios (RF), por sus siglas en inglés, son especialmente adecuados para aplicaciones 
agrícolas debido a su capacidad para manejar relaciones no lineales y clasificar la 
importancia de las variables (Breiman, 2001; Sarker et al., 2020).

A pesar del uso creciente de modelos ML en la agricultura, pocos estudios se han centrado en 
el desempeño comparativo de C RT y RF para predecir el rendimiento del trigo en múltiples 
variedades. Este estudio tiene como objetivo abordar esta brecha evaluando la precisión predictiva 
de estos modelos para cuatro variedades de trigo, identificando los factores agroclimáticos más 
influyentes y estableciendo reglas de decisión para la optimización del rendimiento.

Material y métodos

Material de origen y tratamientos experimentales
Cuatro cultivares de trigo duro (Odysseo, Saragola, Irid y Maestrale) fueron seleccionados para 
este estudio en función de su rendimiento agronómico y adaptabilidad. Estos cultivares son 
reconocidos comercialmente por su alto potencial de rendimiento, calidad de grano y tolerancia al 
estrés (De Vita et al., 2007; Kabbaj et al., 2017). Durante la temporada de crecimiento de 2020 
se realizaron experimentos de campo en tres zonas agroclimáticas diferentes de Argelia: Annaba 
(Annaba), región costera con clima mediterráneo húmedo; Ouled Rahmoune (Constantine), región 
semiárida con precipitaciones moderadas; Oued Zenati (Guelma), región seca con disponibilidad 
limitada de agua.

Cada sitio experimental cubría un área de 2 500 m2 y los ensayos se realizaron utilizando un 
diseño de bloques completos al azar (DBCA) con tres repeticiones por cultivar. Se empleó una 
tasa de siembra de 200 kg ha-1 para lograr una densidad de plantas adecuada, promoviendo 
una emergencia y establecimiento uniforme de los cultivos. La fertilización de base se realizó 
utilizando fosfato monoamónico (MAP), por sus siglas en inglés aplicado a una dosis de 150 kg 
ha-1 para proporcionar nutrientes esenciales para el crecimiento temprano. Además, las medidas 
de protección de cultivos incluyeron la aplicación de tratamientos fungicidas como Celest Xtra y 
Amistar Xtra, junto con Acil, para proteger las plantas de trigo frente a posibles enfermedades y 
mejorar el rendimiento de los cultivos.

Recolección de datos
Se recopilaron datos agroclimáticos y agronómicos durante toda la temporada de crecimiento, 
incluyendo la temperatura media anual (TMA) (°C), altitud, precipitación total anual (PTA) (mm), 
semillas por espiga (conteo), densidad de emergencia (plantas m-2), espigas m-2 (conteo), 
macollos por planta (conteo), peso de mil granos (PMG) (g) y rendimiento práctico del trigo
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(q ha-1), utilizado como variable objetivo. Los datos meteorológicos se obtuvieron de la Oficina 
Meteorológica Nacional (Argelia), mientras que los parámetros agronómicos se midieron siguiendo 
procedimientos estandarizados de campo y laboratorio (Blum, 2011; Joia et al., 2025).

Enfoques de modelado predicvo
Se aplicaron dos enfoques de aprendizaje automático utilizando IBM SPSS Modeler 18.0 
para predecir el rendimiento del trigo: Árboles de clasificación y regresión (C&RT), un modelo 
basado en árboles de decisión que divide los datos en subconjuntos homogéneos con base en 
las variables más significativas (Breiman et al., 1984); y Regresión de árboles aleatorios (RT), 
un método de aprendizaje por conjuntos que mejora la precisión predictiva promediando 
múltiples árboles de decisión (Liaw y Wiener, 2002). El desempeño del modelo se evaluó 
utilizando la raíz del error cuadrático medio (RECM), el error relativo (ER) y la varianza 
explicada (VE) (Chlingaryan et al., 2018).

Importancia de variables e interpretación de los árboles de decisión
La importancia de las características se evaluó utilizando la impureza de Gini (C RT) y 
la importancia de permutación (RT). Los árboles de decisión generados se analizaron para 
cada cultivar de trigo para identificar los umbrales clave que influyen en el rendimiento del trigo 
(Hastie et al., 2009).

Resultados

Rendimiento agronómico de culvares de trigo duro
Los resultados destacan una variabilidad significativa en el rendimiento agronómico de los cuatro 
cultivares de trigo duro en tres localidades distintas (Cuadro 1). Esta variabilidad se debe 
principalmente a factores ambientales, particularmente a las condiciones climáticas, y a prácticas 
agronómicas, que se sabe que influyen en el crecimiento, el rendimiento y los rasgos fenotípicos 
de los cultivares de trigo (Kabbaj et al., 2017; Royo et al., 2020).

Cuadro 1. Rendimiento agronómico de culvares de trigo duro.

Localidad Cultivar Densidad de

emergencia

(plantas m-2)

Macollos

por planta

Espigas m-2 Semillas

por espiga

PMG (g) Rendimiento

practico (q ha-1)

Ir#d 280.5 ±6.36 3 ±0 392 ±4.24 35.4 ±1.56 47.5 ±0.71 51.5 ±4.95

Maestrale 269.5 ±6.36 3 ±0 380 ±7.07 35.1 ±2.69 48 ±1.41 51.5 ±3.54

Odysseo 282 ±0 3 ±0 395 ±0 33.6 ±3.39 49.5 ±0.71 52.5 ±4.95

Annaba

(Annaba)

Saragola 276 ±4.24 3 ±0 387 ±7.07 33.5 ±2.12 48.5 ±0.71 54 ±5.66

Ir#d 287 ±0 3.8 ±0 563 ±0 38.5 ±0 51 ±0 35 ±3.25

Maestrale 292 ±0 4.6 ±0 612 ±0 39.65 ±0 50.25 ±0 35 ±3.75

Odysseo 284 ±0 3.75 ±0 526 ±0 37.75 ±0 49.6 ±0 28 ±2.4

Ouled

Rahmoune

(Canstantine)

Saragola 278 ±0 3.86 ±0 535 ±0 36.5 ±0 49.85 ±0 27.9 ±3.39

Ir#d 298 ±0 5 ±0 665 ±0 35.75 ±0 49.7 ±0 31.5 ±3.96

Maestrale 297 ±0 5 ±0 789 ±0 36.5 ±0 48.3 ±0 40 ±4.81

Odysseo 289 ±0 6 ±0 703 ±0 39.5 ±0 48.3 ±0 40 ±3.68

Oued Znati

(Guelma)

Saragola 292 ±0 5 ±0 664 ±0 37.25 ±0 51 ±0 41.5 ±4.67

En Annaba, los rendimientos prácticos fueron más altos para Saragola (54 ±5.66 q ha-1), lo cual
es coherente con los hallazgos de estudios previos que indican que este cultivar muestra una
buena adaptación a condiciones moderadas, especialmente cuando la temperatura y la humedad
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del suelo son adecuadas (Csépl# et al., 2024). Los valores de PMG para Odysseo (49.5 ±0.71 g)
e Irid (47.5 ± 0.71 g) sugieren un buen potencial de llenado de grano, que es una característica
deseable para la mejora del rendimiento (Maccaferri et al., 2011).

La localidad de Ouled Rahmoune mostró un aumento en el macollamiento y la densidad de espigas
entre cultivares, con Maestrale alcanzando la mayor densidad de emergencia (292 ±0 plantas m-2) y
tasa de macollamiento (4.6 ±0 macollos por planta). Este fenómeno puede atribuirse a condiciones
favorables del suelo que probablemente favorecieron la formación de macollos y la aparición de
espigas, como respaldan Kabbaj et al. (2017), quienes informaron que una mejor fertilidad del suelo
mejora la producción de macollos y en consecuencia, incrementa el rendimiento. Sin embargo,
los rendimientos prácticos fueron menores en comparación con Annaba, con Odysseo y Saragola
registrando los rendimientos más bajos (28 ±2.4 q ha-1 y 27.9 ±3.39 q ha-1, respectivamente).
Esto sugiere que el potencial de rendimiento puede depender no solo de la densidad de espigas,
sino también de la eficiencia del llenado de grano, que pudo haberse visto comprometida por
condiciones climáticas subóptimas durante el periodo de llenado de grano (Royo et al., 2020).

Oued Znati mostró la mayor productividad global, especialmente para el cultivar Saragola, que
alcanzó un rendimiento práctico de 41.5 ±4.67 q ha-1 con un PMG de 51 ±0 g. Esta localidad
también demostró una capacidad superior de macollamiento y densidad de espigas para todos los
cultivares, con Odysseo alcanzando 703 ±0 espigas m-2 y 6 ±0 macollos por planta. Además, los
altos valores de PMG observados en esta localidad indican condiciones favorables para el llenado
de granos, un determinante crítico del rendimiento (Kabbaj et al., 2017).

Desempeño del modelo predicvo
El modelo de regresión de árboles aleatorios mostró una fuerte capacidad predictiva para la
estimación del rendimiento del trigo, con una varianza explicada del 70.4%, lo que sugiere que
las variables agroclimáticas y agronómicas seleccionadas explican una proporción sustancial de la
variabilidad del rendimiento. La raíz del error cuadrático medio (RECM) fue de 7.395, lo que indica
un nivel moderado de desviación entre los valores predichos y los observados. Además, el error
relativo de 0.296 sugiere un desempeño rendimiento del modelo bastante confiable (Cuadro 2).

Cuadro 2. Métricas del desempeño del modelo de regresión de árboles aleatorios para la predicción 
del rendimiento prácco del trigo.

Parámetros del modelo Entrada

Variable objetivo Rendimiento práctico de trigo

Método de generación del modelo Regresión de árboles aleatorios

Número de entradas predictoras 7

Raíz del error cuadrático medio (RECM) 7.395

Error relativo (ER) 0.296

Varianza explicada (VE) 0.704

Estos resultados demuestran la robustez de las técnicas de aprendizaje automático en la predicción
de rendimientos agrícolas, lo que se alinea con estudios previos que destacan la eficacia de
modelos basados en árboles de decisión para predecir las respuestas de los cultivos a factores
ambientales (Chlingaryan et al., 2018; López-Granados et al., 2020).

Factores agroclimácos y agronómicos que afectan al rendimiento del trigo
El análisis C RT reveló que la TMA fue la variable dominante que influyó en el rendimiento de los
cultivares Saragola, Irid y Maestrale, con la densidad de emergencia jugando también un papel
significativo. En cambio, para el cultivar Odysseo, el rendimiento estuvo principalmente influenciado
por la TMA y el número de semillas por espiga.
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Culvar Odysseo
Para Odysseo, el árbol de decisión de C RT identificó la TMA como el principal determinante de 
la variación del rendimiento. Cuando la TMA ≤ 16.15 °C, el rendimiento medio fue de 28 q ha-1, lo 
que representa una reducción significativa debido a condiciones de temperatura subóptimas. Para 
una TMA entre 16.15 °C y 17.25 °C, el rendimiento aumentó a 34 q ha-1, mostrando un impacto 
positivo de temperaturas más altas en el desarrollo de granos. Cuando la TMA superó los 17.25 
°C, el rendimiento alcanzó 52.5 q ha-1, si las semillas por espiga eran más de 33.6. Estos hallazgos 
sugieren que el cultivar Odysseo responde favorablemente a temperaturas más cálidas, con un 
rendimiento mejorando a medida que la TMA supera los 17.25 °C. El papel fundamental de la 
densidad de semillas resalta aún más la importancia de optimizar la fertilidad de las espigas bajo 
regímenes variables de temperatura (Figura 1).

Figura 1. Análisis de árboles de regresión para predecir el rendimiento de trigo en el culvar Odysseo.

Culvar de Saragola
En Saragola, el rendimiento fue muy sensible a la TMA y a la densidad de emergencia. Cuando la
TMA estuvo por debajo de 16.15 °C, el rendimiento descendió a 38 q ha-1, lo que indica un impacto
negativo de las temperaturas más bajas en el llenado de grano. Cuando la TMA superó los 16.15
°C y la densidad de emergencia fue óptima, el rendimiento aumentó a 51 q ha-1, demostrando
el efecto combinado de la temperatura y la gestión agronómica sobre la productividad. Estos
resultados destacan que el cultivar Saragola es menos tolerante a bajas temperaturas, requiriendo
condiciones más cálidas para una expresión óptima del rendimiento. Esto coincide con informes
previos sobre variedades de trigo duro que muestran un desarrollo reducido de granos en climas
más fríos (Ferrise et al., 2019) (Figura 2).
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Figura 2. Análisis de árboles de regresión para predecir el rendimiento de trigo en el culvar de Saragola.

Culvar Irid
El modelo de árboles de decisión del cultivar Irid identificó la TMA y la densidad de emergencia
como los principales determinantes del rendimiento. Cuando la TMA estuvo por debajo de 17.25
°C, el rendimiento se mantuvo bajo, lo que sugiere que el cultivar Irid requiere temperaturas más
altas para el desarrollo del grano. Cuando la TMA superó los 17.25 °C, el rendimiento aumentó
significativamente, especialmente cuando la densidad de plantas fue alta. Este comportamiento
indica que el cultivar Irid se beneficia de temperaturas más altas, pero la densidad de plantas
también juega un papel crucial para lograr una alta productividad. Este hallazgo es coherente con
estudios que enfatizan el papel del peso del grano como componente primario del rendimiento en
el trigo (Lobell et al., 2017) (Figura 3).
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Figura 3. Análisis de árboles de regresión para predecir el rendimiento de trigo en el culvar Irid.

Culvar Maestrale
El análisis C RT para el cultivar Maestrale indicó una fuerte dependencia de la TMA y la densidad
de emergencia. El rendimiento se mantuvo bajo cuando la TMA estuvo por debajo de 17.25 °C,
probablemente debido a malas condiciones de llenado de grano. Cuando la TMA superó los 17.25
°C, el rendimiento mejoró significativamente, siempre que la densidad de emergencia fue óptima.
Estos resultados sugieren que Maestrale requiere tanto temperaturas cálidas como una densidad
adecuada de emergencia para una productividad óptima. La interacción entre temperatura y
densidad de plantas está bien documentada en la fisiología del trigo, donde una baja densidad de
emergencia puede agravar los efectos negativos de temperaturas subóptimas (Trnka et al., 2021)
(Figura 4).
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Figura 4. Análisis de árboles de regresión para predecir el rendimiento de trigo en el culvar Maestrale.

Los cultivares Saragola e Irid dependen en gran medida de la TMA y la densidad de emergencia,
con una mejora significativa del rendimiento cuando la TMA supera los 16.15 °C y 17.25 °C,
respectivamente, y la densidad de emergencia es óptima. El cultivar Maestrale muestra un
comportamiento similar al de Irid, con un aumento de rendimiento vinculado a un TMA superior a
17.25 °C y una densidad de emergencia favorable.

Conclusiones
El cultivar Odysseo demostró mayor resiliencia a las fluctuaciones de temperatura, beneficiándose
especialmente de temperaturas más altas. No obstante, su productividad depende fuertemente de
una alta densidad de emergencia, lo que indica la importancia de una siembra densa y uniforme,
especialmente en regiones más cálidas.

Los cultivares Saragola, Irid y Maestrale mostraron una mayor sensibilidad tanto a la temperatura
como a la densidad de emergencia, lo que implica que estas variedades requieren una calibración
más precisa de la tasa de semillas y calendarios de siembra adaptados bajo condiciones climáticas
cambiantes para evitar pérdidas en el rendimiento. Las recomendaciones prácticas para mejorar
la gestión de los cultivos de trigo incluyen: 1) adaptar la densidad de siembra según el cultivar y
el régimen de temperatura esperado: adoptar tasas de semillas más altas para Odysseo en zonas
cálidas y ajustar finamente las densidades para otros cultivares basándose en modelos predictivos
de emergencia; 2) integrar datos agroclimáticos en tiempo real para ajustar las prácticas de manejo,
especialmente en cuanto a la fecha de siembra y la preparación del campo; y 3) emplear zonas de
gestión específicas del sitio utilizando reglas de decisión derivadas de los modelos para optimizar
los insumos (fertilizantes, riego) donde tendrán mayor efecto en el rendimiento.

La comparación entre los modelos de C RT y RF reveló sus fortalezas complementarias en
la predicción del rendimiento del trigo y en el desarrollo de reglas de decisión aplicables. Los
RF proporcionaron conocimientos sólidos y generalizables debido a su naturaleza de conjunto,
convirtiéndola en una herramienta valiosa para la toma de decisiones agronómicas basadas
en datos. Dadas los resultados prometedores, las herramientas de inteligencia artificial (IA),
especialmente las basadas en aprendizaje automático y algoritmos de aprendizaje por conjuntos,
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ofrecen un potencial significativo para refinar las predicciones de rendimiento y apoyar decisiones
agronómicas adaptativas. Los sistemas impulsados por IA pueden integrar dinámicamente
datos de múltiples fuentes (satélite, sensores, previsiones meteorológicas) para proporcionar
recomendaciones específicas del sitio en tiempo real, fomentando la transición hacia la agricultura
de precisión y la producción de trigo resiliente al clima.
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