

Revista Mexicana de Ciencias Agrícolas

Sensibilidad de especies de *Rhizoctonia* de frijol y maíz a fungicidas químicos

Karen Rabago-Zavala¹
Fernando Alberto Valenzuela-Escoboza^{1,§}
Blanca Elvira López-Valenzuela¹
Quintín Armando Ayala-Armenta¹
Juan Luis Pérez-Mora¹

1 Facultad de Agricultura del Valle del Fuerte-Universidad Autónoma de Sinaloa. Avenida Japaraquí s/n y Calle 16, Juan José Ríos, Sinaloa, México. CP. 81110.

Autor para correspondencia: fernando.vzla@favf.mx.

Resumen

En la región norte de Sinaloa, el hongo *Rhizoctonia* spp., causa secadera de planta y pudrición en frijol y maíz, afectando la germinación, el crecimiento y las raíces. Lo que debilita y provoca la muerte en plantas. Los agricultores frecuentemente buscan mitigar la enfermedad mediante la aplicación de fungicidas químicos; sin embargo, la eficacia de estos tratamientos es frecuentemente restringida. Esto se debe a la selección inadecuada de fungicidas, la dosificación incorrecta durante la aplicación y la posible resistencia adquirida por los patógenos frente a estos compuestos, entre otros factores. El propósito de este estudio fue evaluar la sensibilidad *in vitro* de aislados de *Rhizoctonia* de frijol y maíz a cuatro fungicidas sintéticos (Azoxystrobin, Benomilo, Metil tiofanato y Tebuconazol). Se realizó un diseño completamente al azar, utilizando la dosis comercial de cada fungicida y un control, con tres repeticiones por tratamiento. El fungicida convencional tebuconazol mostró ser el más eficaz contra todas especies de *Rhizoctonia* evaluadas inhibiendo en un 100% el crecimiento. Las pruebas de efectividad sobre la sensibilidad de los aislados de *Rhizoctonia* a los fungicidas permite conocer la variabilidad del comportamiento y facilita el monitoreo de los aislados que presentan resistencia a los fungicidas en la población de patógenos. Lo cual es esencial para el desarrollo de estrategias de control efectivas para la Rizoctoniasis.

Palabras claves:

fungicidas, resistencia, rizoctoniasis, tebuconazol.

License (open-access): Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons

elocation-id: e3836

Introducción

El hongo *Rhizoctonia* es un patógeno de importancia económica que reduce la productividad de cultivos como el frijol (*Phaseolus vulgaris*) y maíz (*Zea mays*) en el mundo y algunas regiones de México como el estado de Sinaloa. *Rhizoctonia* se clasifica en especies multinucleadas como *R. solani* y *R. zeae.*, y especies binucleadas, como *Rhizoctonia* binucleada (Perdomo, 2007; González, 2013; Yang *et al.*, 2015). En frijol y maíz, la infección por Rhizoctoniasis da lugar a lesiones costrosas y cancros oscuros en la base de los tallos y las raíces, afectando tanto el crecimiento como el rendimiento de las plantas (Rabago *et al.*, 2024).

Los productores de frijol y maíz emplean estrategias como rotación de cultivos, agentes de biocontrol y semillas certificadas libres de patógenos para controlar la Rhizoctoniosis. Sin embargo, el uso de fungicidas químicos sigue siendo la práctica más común en Sinaloa y otras regiones productoras (Hernández et al., 2018). El uso de fungicidas químicos no es una solución sostenible debido a su impacto ambiental y la resistencia que pueden desarrollar los patógenos, como se ha reportado en *R. solani* en arrozales de Luisiana (EE. UU) y Henan (China). Además, los distintos grupos de anastomosis (AG) de *Rhizoctonia* muestran sensibilidad variable a los fungicidas, según estudios realizados en varios países como, Estados Unidos de América, Francia y México (Muzhinji et al., 2018).

El FRAC (2024) advierte que el uso repetido de fungicidas con modo de acción único aumenta el riesgo de insensibilidad de los patógenos y el monitoreo constante de la sensibilidad es clave para detectar tempranamente casos de resistencia. Por ello este estudio evaluó la sensibilidad *in vitro* de aislados de *Rhizoctonia* de frijol y maíz a cuatro fungicidas sintéticos (Azoxystrobin, Benomilo, Metil tiofanato y Tebuconazol).

Materiales y métodos

Origen de los aislados de Rhizoctonia

Los aislados de *Rhizoctonia* fueron recolectados en el ciclo otoño-invierno 2020-2021 en el norte de Sinaloa, sometidos a pruebas de patogenicidad e identificación morfológica y molecular, conservados a 25 °C en tubos con suelo estéril (Rabago *et al.*, 2024). Se reactivaron en medio PDA y se estudiaron seis especies provenientes de frijol y maíz: *R. solani* AG-4 HGII, *R. solani* AG-7, *R. binucleada* AG-A, *R. binucleada* AG-G y *R. zeae*.

Prueba de sensibilidad a fungicidas

Se evaluó la efectividad de cuatro fungicidas comerciales: azoxystrobin, benomilo, metil tiofanato y tebuconazol, para el control de las especies *Rhizoctonia solani* AG-4 HGI, *Rhizoctonia solani* AG-4 HGII, *Rhizoctonia solani* AG-7, *Rhizoctonia binucleada* AG-A, *Rhizoctonia binucleada* AG-G y *Rhizoctonia zeae*. Las dosis comerciales de cada fungicida (0.05 L ha-1 de azoxystrobin, metil tiofanato, tebuconazol y 0.5 kg ha-1 de benomilo) se incorporaron en medio PDA recién esterilizado a 45 °C, que luego se vertió en cajas Petri esterilizadas de 8 cm de diámetro. Una vez solidificado el medio, se colocó en el centro de cada caja una rodaja de 0.8 cm de micelio-agar de cada especie.

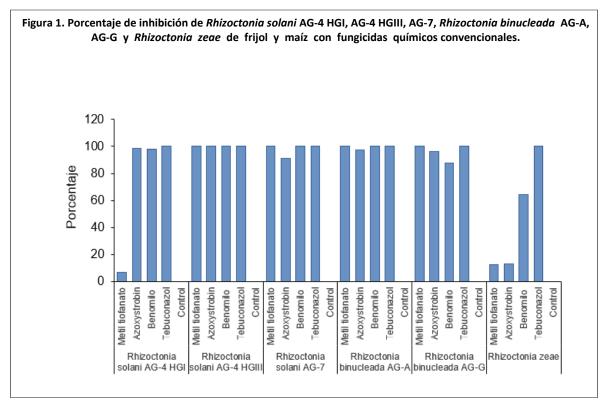
Diseño experimental

El tratamiento control consistió en PDA sin fungicida. El diseño experimental fue completamente aleatorizado, utilizando cajas Petri inoculadas con el hongo como unidad experimental. Se aplicaron cuatro tratamientos y el control, con tres repeticiones por tratamiento y una réplica adicional del experimento. El efecto de los tratamientos se evaluó midiendo el radio de la colonia (cm) del hongo a las 24, 48 y 72 h. Los datos fueron transformados para homogenizar varianzas (Little y Hills, 1989) y analizados mediante Anova. Las medias se compararon con la prueba de Kruskal-Wallis (p<0.05) usando InfoStat y la susceptibilidad de los aislados se determinó mediante el porcentaje de inhibición del crecimiento fúngico.

Resultados

La efectividad biológica de los fungicidas convencionales evaluados, a las 24, 48 y 72 h, mostraron diferencias significativas entre los tratamientos. En medio con Tebuconazol se registró el menor radio de la colonia (*p*< 0.05) en los aislados *Rhizoctonia solani* AG-4 HGI, AG-4 HGIII, AG-7, *Rhizoctonia binucleada* AG-A, AG-G y *Rhizoctonia zeae*, misma que fueron susceptibles a este fungicida, de acuerdo con los resultados de Pérez *et al.* (2019), quienes reportaron que el género *Rhizoctonia* es susceptible a dicho producto.

Rhizoctonia solani AG-4 HGIII y Rhizoctonia solani AG-7, mostraron sensibilidad a todos los fungicidas evaluados. Por el contrario, Rhizoctonia zeae y Rhizoctonia solani AG-4 HGI demostraron tolerancia al Metil tiofanato y Benomilo. Asimismo, Rhizoctonia binucleada AG-A y AG-G presentaron tolerancia al Azoxystrobin. En los cultivos sin fungicida, los hongos ocuparon por completo las cajas a las 72 h. Las especies tolerantes a fungicidas mostraron un comportamiento similar al control sin presentar diferencias significativas (Cuadro 1).


Cuadro 1. Crecimiento del diámetro de las colonias (cm) de especies de *Rhizoctonia* de frijol y maíz en medios con diferentes fungicidas químicos.

Especie de Rhizoctonia	Fungicida químico (ia)	24 h de exposición	48 h de exposición	72 h de exposición
Rhizoctonia	Metil tiofanato	1.56 B	2.27 B	2.83 B
<i>solani</i> AG-4 HGI	Azoxystrobin	0.7 A	0.7 A	0.7 A
	Benomilo	0.7 A	1.22 AB	1.56 AB
	Tebuconazol	0.7 A	0.7 A	0.7 A
	Control	1.58 B	2.1 B	2.63 B
Rhizoctonia	Metil tiofanato	0.7 A	0.7 A	0.7 A
solani AG-4 HGIII	Azoxystrobin	0.7 A	0.7 A	0.7 A
	Benomilo	0.7 A	0.7 A	0.7 A
	Tebuconazol	0.7 A	0.7 A	0.7 A
	Control	1.44 B	2.44 B	3 B
Rhizoctonia solani AG-7	Metil tiofanato	0.7 A	0.7 A	0.7 A
	Azoxystrobin	0.7 A	0.7 A	0.7 A
	Benomilo	0.7 A	0.7 A	0.7 A
	Tebuconazol	0.7 A	0.7 A	0.7 A
	Control	1.51 B	2.44 B	2.92 B
Rhizoctonia	Metil tiofanato	0.7 A	0.7 A	0.7 A
binucleada AG-A	Azoxystrobin	0.7 A	0.83 AB	1.62 AB
	Benomilo	0.7 A	0.7 A	0.7 A
	Tebuconazol	0.7 A	0.7 A	0.7 A
	Control	1.22 B	1.59 B	2.64 B
Rhizoctonia	Metil tiofanato	0.7 A	0.77 AB	0.77 AB
binucleada AG-G	Azoxystrobin	0.7 A	0.89 AB	1.26 AB
	Benomilo	0.7 A	0.7 A	0.7 A
	Tebuconazol	0.7 A	0.7 A	0.7 A
	Control	1 AB	1.54 B	3 B
Rhizoctonia zeae	Metil tiofanato	1.18 B	1.94 B	2.66 B
	Azoxystrobin	0.7 A	0.7 A	0.7 A
	Benomilo	1.03 AB	1.35 AB	1.81 AB
	Tebuconazol	0.7 A	0 A	0.7 A
	Control	1 AB	1.89 B	2.69 B

Los datos se transformaron a raíz cuadrada (Vx+0.5) antes de su análisis. Medias con la misma letra en cada columna no son significativamente diferentes Kruskal Wallis p<0.05).

Estos resultados coinciden con los hallazgos de Alburqueque y Gusqui (2018), quienes documentaron la tolerancia de aislados de *Rhizoctonia* al Azoxystrobin. Sin embargo, los trabajos de Muzhinji et al. (2018) reportaron la susceptibilidad de los aislados de *Rhizoctonia* a este mismo fungicida en condiciones *in vitro*, lo que subraya la variabilidad genética del patógeno.

A las 92 h, el Tebuconazol logró un 100% de inhibición del crecimiento de todos los aislados, mientras que los demás tratamientos mostraron resultados variables (Figura 1). Esto coincide con lo señalado por González (2013) sobre la heterogeneidad de *Rhizoctonia*, que le permitió adaptarse a diferentes condiciones.

Conclusiones

El estudio destaca la variabilidad en respuesta a la sensibilidad de especies de *Rhizoctonia* de frijol y maíz a diferentes fungicidas. Los aislados probados mostraron sensibilidad al Tebuconazol, el cual inhibió completamente el crecimiento en 92 h. *R. solani* AG-4 HGIII, *R. zeae, R. binucleada* AG-A y G, mostraron insensibilidad a fungicidas como Metil tiofanato, Benomilo y Azoxystrobin. Lo cual evidencia la diversidad genética de los aislados, que puede afectar su adaptación y respuesta a los tratamientos. Se enfatiza la necesidad de vigilancia continua y estrategias integradas para manejar esta enfermedad, así como la selección adecuada de fungicidas según la especie y la concentración para optimizar su control en cultivos agrícolas.

Bibliografía

- Alburqueque, A. D. y Gusqui, M. R. 2018. Eficacia de fungicidas químicos para el control *in vitro* de diferentes fitopatógenos en condiciones controladas. Arnaldoa. 25(2):489-498. http://doi.org/10.22497/arnaldoa.252.25209.
- FRAC. 2024. Fungicide resistance action committee. Fungicide Resistance Management Home.

- González, D. 2013. Identification, molecular characterization, and evolution of group I introns at the expansion segment D11 of 28S rDNA in *Rhizoctonia* species. Fungal Biology. 117(9):623-637. https://doi.org/10.1016/j.funbio.2013.06.006.
- Hernández-Pérez, D.; Díaz-Castellanos, M.; Quiñones-Ramos, R.; Santos-Bermúdez, R.; Portal-González, N. y Herrera-Isla, L. 2018. Control de *Rhizoctonia solani* en frijol común con rizobacterias y productos naturales. Revista Centro Agrícola. 45(2):55-60.
- Little, T. M. y Hills, F. J. 1989. Métodos estadísticos para la investigación en la agricultura. Ed. trillas 2a edición. México, DF. 125-143 pp.
- Muzhinji, N.; Woodhall, J. W.; Truter, M. and Van-Waals J. E. 2018. Variation in fungicide sensitivity among *Rhizoctonia* isolates recovered from potatoes in south Africa. Plant Disease. 102(8):1520-1526. pdis-09-17-1470-re.
- Perdomo, R. D.; Hernández, A. J.; González, A. D.; Pineda, J. B. y Alezones, J. M. 2007. Caracterización y evaluación de virulencia en aislamientos de *Rhizoctonia solani* Kühn, causante de la mancha bandeada en maíz. INCI. 32(1):48-54.
- Pérez-Rodríguez, L. R.; Pérez-Moreno, L.; Guzmán-Mendoza, R.; Sanzón-Gómez, D. y Belmonte-Vargas, J. R. 2019. Sensibilidad in vitro de hongos fitopatógenos causantes de enfermedades en fresa a controladores biológicos y fungicidas, en el estado de Guanajuato, México. Acta Universitaria. 29:1-11. https://doi.org/10.15174/au.2019.2339.
- Rabago-zavala, K.; Valenzuela-Escoboza, B. E.; Lizarraga-Sánchez, G. J. and Valenzuela-Escoboza, F. V. 2024. Morphological, molecular and pathogenic caracterization of *Rhizoctonia solani* isolate associated whit been drying in Northern Sinaloa, Mexico. AgroProductividad. 17(11):253-261. https://doi.org/10.32854/agrop.v17i11.3143.
- Yang, Y. G.; Zhao, C.; Guo, Z. J. and Wu, X. H. 2015. Characterization of a new anastomosis group (AG-W) of Binucleate *Rhizoctonia*, causal agent for potato stem canker. Plant Disease. 99(12):1757-1763. https://doi.org/10.1094/PDIS-01-15-0036-re.

Sensibilidad de especies de *Rhizoctonia* de frijol y maíz a fungicidas químicos

Journal Information

Journal ID (publisher-id): remexca

Title: Revista mexicana de ciencias agrícolas

Abbreviated Title: Rev. Mex. Cienc. Agríc

ISSN (print): 2007-0934

Publisher: Instituto Nacional de Investigaciones

Forestales, Agrícolas y Pecuarias

Article/Issue Information

Date received: 1 October 2025

Date accepted: 1 November 2025

Publication date: 25 November 2025

Publication date: Oct-Nov 2025

Volume: 16

Issue: 7

Electronic Location Identifier: e3836

DOI: 10.29312/remexca.v16i7.3836

Categories

Subject: Nota de investigación

Palabras claves:

Palabras claves:

fungicidas resistencia rizoctoniasis tebuconazol

Counts

Figures: 1
Tables: 1
Equations: 0
References: 10