https://doi.org/10.29312/remexca.v16i5.3743

elocation-id: e3743

Mendoza-Pedroza, Velázquez-Martínez, Reséndiz, Ramírez-Sánchez, Rodríguez-Ortega, and Hernández-Guzmán: Characterization of native corns in Tulancingo, Hidalgo

Journal Metadata

Journal Identifier: remexca [journal-id-type=publisher-id]

Journal Title Group

Journal Title (Full): Revista mexicana de ciencias agrícolas

Abbreviated Journal Title: Rev. Mex. Cienc. Agríc [abbrev-type=publisher]

ISSN: 2007-0934 [pub-type=ppub]

Publisher

Publisher’s Name: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias

Article Metadata

Article Identifier: 10.29312/remexca.v16i5.3743 [pub-id-type=doi]

Article Grouping Data

Subject Group [subj-group-type=heading]

Subject Grouping Name: Articles

Title Group

Article Title: Characterization of native corns in Tulancingo, Hidalgo

Contributor Group

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Mendoza-Pedroza

Given (First) Names: Sergio Iban

X (cross) Reference [ref-type=aff; rid=aff1]

Superscript: 1

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Velázquez-Martínez

Given (First) Names: Mauricio

X (cross) Reference [ref-type=aff; rid=aff2]

Superscript: 2

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Reséndiz

Given (First) Names: Efraín Jehú Hernández

X (cross) Reference [ref-type=aff; rid=aff3]

Superscript: 3

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Ramírez-Sánchez

Given (First) Names: Susana Elizabeth

X (cross) Reference [ref-type=aff; rid=aff3]

Superscript: 3

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Rodríguez-Ortega

Given (First) Names: Leodan Tadeo

X (cross) Reference [ref-type=aff; rid=aff4]

Superscript: 4

Contributor [contrib-type=author]

Name of Person [name-style=western]

Surname: Hernández-Guzmán

Given (First) Names: Filogonio Jesús

X (cross) Reference [ref-type=aff; rid=aff5]

Superscript: 5

X (cross) Reference [ref-type=corresp; rid=c1]

Superscript: §

Affiliation [id=aff1]

Label (of an Equation, Figure, Reference, etc.): 1

Institution Name: in an Address: Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. CP. 56230. [content-type=original]

Institution Name: in an Address: Colegio de Postgraduados [content-type=normalized]

Institution Name: in an Address: Colegio de Postgraduados [content-type=orgname]

Institution Name: in an Address: Campus Montecillo [content-type=orgdiv1]

Address Line

City: Texcoco

State or Province: Estado de México

Postal Code: 56230

Country: in an Address: Mexico [country=MX]

Affiliation [id=aff2]

Label (of an Equation, Figure, Reference, etc.): 2

Institution Name: in an Address: Campo Experimental San Luis-INIFAP. Carretera San Luis Potosí-Matehuala km 14.5, Palma de la Cruz, San Luis Potosí, México. CP. 78432. [content-type=original]

Institution Name: in an Address: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias [content-type=normalized]

Institution Name: in an Address: Campo Experimental San Luis [content-type=orgdiv1]

Institution Name: in an Address: INIFAP [content-type=orgname]

Address Line

State or Province: San Luis Potosí

Postal Code: 78432

Country: in an Address: Mexico [country=MX]

Affiliation [id=aff3]

Label (of an Equation, Figure, Reference, etc.): 3

Institution Name: in an Address: Escuela Federal 3 Héroe de Nacozari, Av. del Ferrocarril 100, Felipe Ángeles, Tulancingo de Bravo, Hidalgo. CP. 43640. [content-type=original]

Institution Name: in an Address: Escuela Federal 3 Héroe de Nacozari [content-type=normalized]

Institution Name: in an Address: Escuela Federal 3 Héroe de Nacozari [content-type=orgname]

Address Line

State or Province: Hidalgo

Postal Code: 43640

Country: in an Address: Mexico [country=MX]

Affiliation [id=aff4]

Label (of an Equation, Figure, Reference, etc.): 4

Institution Name: in an Address: Universidad Politécnica Francisco I. Madero. Domicilio Conocido SN, Francisco I. Madero, Tepatepec, Hidalgo. CP. 42660. [content-type=original]

Institution Name: in an Address: Universidad Politécnica Francisco I Madero. [content-type=normalized]

Institution Name: in an Address: Universidad Politécnica Francisco I. Madero [content-type=orgname]

Address Line

State or Province: Hidalgo

Postal Code: 42660

Country: in an Address: Mexico [country=MX]

Affiliation [id=aff5]

Label (of an Equation, Figure, Reference, etc.): 5

Institution Name: in an Address: Departamento de Agroindustrias-Universidad Autónoma Chapingo. Carretera. Federal México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230. [content-type=original]

Institution Name: in an Address: Universidad Autónoma Chapingo [content-type=normalized]

Institution Name: in an Address: Departamento de Agroindustrias [content-type=orgdiv1]

Institution Name: in an Address: Universidad Autónoma Chapingo [content-type=orgname]

Address Line

City: Texcoco

State or Province: Estado de México

Postal Code: 56230

Country: in an Address: Mexico [country=MX]

Author Note Group

Correspondence Information: [§] Autor para correspondencia: fjesushg@hotmail.com [id=c1]

Publication Date [date-type=pub; publication-format=electronic]

Day: 20

Month: 08

Year: 2025

Publication Date [date-type=collection; publication-format=electronic]

Season: Jul-Aug

Year: 2025

Volume Number: 16

Issue Number: 5

Electronic Location Identifier: e3743

History: Document History

Date [date-type=received]

Day: 01

Month: 01

Year: 2025

Date [date-type=accepted]

Day: 01

Month: 04

Year: 2025

Permissions

License Information [license-type=open-access; xlink:href=https://creativecommons.org/licenses/by-nc/4.0/; xml:lang=es]

Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons

Abstract

Title: Abstract

Given the need to propagate productive native corns and preserve in situ those from other sites in Mexico, in Tulancingo, Hidalgo, the objective was to assess 23 native Mexican corns in yield, phenology, and characterization of plants and ears of corn in the Highlands of Hidalgo. The sowing was carried out on April 19, 2022, in a completely randomized block design with three replications. Plant height, number of leaves and ears, days to female and male flowering, grain yield, weight of 200 grains, volumetric weight, diameter and length of the ear and number of rows and grains were evaluated. Anova with GLM of SAS and Tukey’s test (α= 0.05) were carried out; likewise, a Pearson regression analysis was performed and the Stepwise option of Sas was used to find out which variable is most responsible for yield. The highest grain yield was observed in the genotype from Atlixco, Puebla (6 782 kg ha-1; p< 0.05). The earliest corn were Huitchila and Palomero, with male flowering 75 and 78 days after sowing (das) and female flowering at 80 and 83 das, respectively (p< 0.05). The 200 heaviest corn grains were from Cuetzala, Guerrero with 94.4 g (p< 0.05), whereas the highest volumetric weight occurred in Palomero, 70.7 kg hl-1. Grain yield was influenced by ear diameter by 28% (p< 0.05). The knowledge of native corns in Tulancingo, Hidalgo, allowed the corn from Atlixco, Romita, Tehuacán, Chaltenco, and Huitchila to be highlighted in terms of grain yield.

Keyword Group [xml:lang=en]

Title: Keywords:

Keyword: Zea mays

Keyword: Ahuehuetitla

Keyword: flowering in corn

Keyword: stepwise

Counts

Figure Count [count=1]

Table Count [count=3]

Equation Count [count=0]

Reference Count [count=20]

Page Count [count=0]

Abstract

Given the need to propagate productive native corns and preserve in situ those from other sites in Mexico, in Tulancingo, Hidalgo, the objective was to assess 23 native Mexican corns in yield, phenology, and characterization of plants and ears of corn in the Highlands of Hidalgo. The sowing was carried out on April 19, 2022, in a completely randomized block design with three replications. Plant height, number of leaves and ears, days to female and male flowering, grain yield, weight of 200 grains, volumetric weight, diameter and length of the ear and number of rows and grains were evaluated. Anova with GLM of SAS and Tukey’s test (α= 0.05) were carried out; likewise, a Pearson regression analysis was performed and the Stepwise option of Sas was used to find out which variable is most responsible for yield. The highest grain yield was observed in the genotype from Atlixco, Puebla (6 782 kg ha-1; p< 0.05). The earliest corn were Huitchila and Palomero, with male flowering 75 and 78 days after sowing (das) and female flowering at 80 and 83 das, respectively (p< 0.05). The 200 heaviest corn grains were from Cuetzala, Guerrero with 94.4 g (p< 0.05), whereas the highest volumetric weight occurred in Palomero, 70.7 kg hl-1. Grain yield was influenced by ear diameter by 28% (p< 0.05). The knowledge of native corns in Tulancingo, Hidalgo, allowed the corn from Atlixco, Romita, Tehuacán, Chaltenco, and Huitchila to be highlighted in terms of grain yield.

Keywords:

Zea mays, Ahuehuetitla, flowering in corn, stepwise

Introduction

The genotypes of native corn in Mexico have been generated by selection by farmers given each agroecological condition (Vega et al., 2022). The evaluation of native corn is important for conserving, characterizing, and providing the basis for genetic improvement (González et al., 2013).

The assessment of native corns with desirable potential in an agronomic evaluation allows determining the potential based on their behavior per se; in relation to the above, Espinosa et al. (2019) evaluated 63 genotypes in two localities in Coahuila, Mexico and reported yields of 6.3 to 8.4 t ha-1, at altitudes of 1 910 m and 1 457 m, respectively; they found eight outstanding corns in each environment.

For their part, Cabrera-Toledo et al. (2019) in San José Miahuatlán, Puebla, studied 18 populations of Zapalote chico; the characteristics with the highest descriptive value were ear height, plant height, number of rows, and ear diameter, and they conclude that genetic variability was low between populations of the same altitude.

Given the need to propagate productive corn materials from other sites in Mexico in Tulancingo, Hidalgo, the study aimed to assess and characterize plants of 23 corns in grain yield, phenology, weight of 200 grains, and volumetric weight and also to quantify (%) the influence of these variables in grain yield.

Materials and methods

The research was conducted in Ahuehuetitla, Tulancingo, Hidalgo, Mexico, located at 20° 05’ 04.37” north latitude and 98° 24’ 49.80” west longitude, at an altitude of 2 168 m. The climate is subhumid temperate, with an annual rainfall of 550 mm and an average annual temperature of 16 °C (García, 2004). The soils are vertisols with a clayey texture (INEGI, 2017).

The sowing was carried out on April 19, 2022, and consisted of depositing two seeds per bush at the bottom of the furrow at a depth of 5 cm and 30 cm apart. The sowing land was prepared as follows: plowing, double harrowing, and furrowing with a separation of 0.8 m and separation between genotypes of 2.4 m.

The irrigations were applied on April 19 and 26, May 4, 19, and 26, June 3, 18, and 25, and July 3 and 18, with a 60 cm irrigation sheet. To control weeds, the mixture atrazine + 2,4D-amine was applied at a dose of 1 000 g of each commercial product ha-1 30 days after sowing (das). The formula 120-60-00 was applied with urea and triple super phosphate. Urea was applied 50% at sowing and the rest at 60 das. The corns studied (Table 1) were from different areas of Mexico from the spring-summer 2021 cycle, and the viability of the seeds before sowing was verified according to Álvarez-Vázquez et al. (2022); Quero-Carrillo et al. (2017) and thus, two viable seeds per plant were deposited.

Table 1

Table 1. General characteristics of corns evaluated in Ahuehuetitla, Tulancingo de Bravo, Hidalgo, in SS 2022.

Num. material Code Color Locality Altitude (m) Municipality Federal state
1 L1 White El Abra 2 283 Tulancingo Hidalgo
2 L2 White La Lagunilla 2 388 Tulancingo Hidalgo
3 H1 White El Canjoy 1 185 San Bartolo Tutotepec Hidalgo
4 H2 White San Bartolo 1 430 San Bartolo Tutotepec Hidalgo
5 HC3 Yellow Calnalli 1 315 Calnalli Hidalgo
6 SLP1 White La Palmita 1 049 Río Verde San Luis Potosí
7 SLP2 White La Palmita 1 049 Río Verde San Luis Potosí
8 SLP3 Black Pocitos 1 980 Charcas San Luis Potosí
9 SLP4 White Pocitos 1 980 Charcas San Luis Potosí
10 SLP5 Black Pocitos 1 980 Charcas San Luis Potosí
11 P1 Black San José Miahuatlán 1 105 San José Miahuatlán Puebla
12 P2 White San Isidro Tlacxitla 1 966 Tianguismanalco Puebla
13 P3 White Rancho Gamboa 1 892 Atlixco Puebla
14 GS1 Yellow Apetlanca 1 720 Cuetzala del Progreso Guerrero
15 GS2 Black Apetlanca 1 720 Cuetzala del Progreso Guerrero
16 GH3 Pale yellow San Francisco Lagunita 692 Cuetzala del Progreso Guerrero
17 GF4 White San Francisco Lagunita 665 Cuetzala del Progreso Guerrero
18 GLS5 White San Francisco Lagunita 546 Cuetzala del Progreso Guerrero
19 Palomero Yellow Colegio de Postgraduados 2 244 Texcoco State of México
20 Chaltenco White Colegio de Postgraduados 2 244 Texcoco State of México
21 CMQ Purple San Juan del Río 1 925 San Juan del Río Querétaro
22 Huitchila Purple INIFAP Zacatepec 1 187 Zacatepec Morelos
23 Romita White Romita 1 746 Romita Guanajuato

The study employed a randomized complete block design with three replications. The experimental plots consisted of two furrows 6 m long and 0.8 m wide (9.6 m2). At 20 das, the population density in each experimental plot was adjusted to 65 000 plants ha-1. At 90 das, 10 representative plants of each genotype were marked and a red and white ribbon was placed on them and measurements were made throughout the experiment. The morphological characterization described by SNICS (2022) was based on the guide for the description of native varieties of corn (Zea mays L.).

The variables were: 1) plant height (PH; from ground level to branch apex, cm); 2) ear height (EH; from ground level to the highest ear, cm); 3) number of leaves at 50% anthesis (NL); 4) number of ears per plant (NEP); 5) days to male flowering (DMF; tassel); 6) days to female flowering (DFF; stigma); 7) flower asynchrony between the male and female flowers (FA). Once the ears were harvested, they following was evaluated: 8) grain yield (kg ha-1); 9) weight of 200 grains (g); 10) volumetric weight (hl-1); 11) ear diameter (ED; cm); 12) ear length (EL; cm); 13) number of rows (NR); 14) number of grains per row (NGR) and 15) number of total grains per ear (NGE). For variables 1 to 7, ten plants with full competence were used, whereas for variables 8 to 13, three replications of each block were taken.

The ears were manually harvested on November 20, 2022. Drying was carried out inside a greenhouse, spreading the ears on a double anti-aphid mesh and stirring them every seven days. Once they reached 13% moisture (measured with an LDS-1G® moisture determinator, Beijing, China), 10 ears of each experimental unit were characterized and then manually shelled, and both cobs and grains were weighed on a Truper® 1551 scale.

The grain yield (kg ha-1) per material was determined by cross-multiplication for each experimental plot and block. Subsequently, the grains of each replication were passed through a Boerner-type homogenizer (Seedburo). The volumetric weight (kg hl-1) was calculated by taking 1 L and weighing it on a Truper 1551 digital scale (g). The weight of 200 grains was determined with a Sartorius Entris® digital scale (0.0001 g; Beijing, China). The data on the average, minimum, and maximum monthly temperature, as well as the precipitation were taken from the CONAGUA meteorological station at the La Esperanza Dam, 4 km from the site (Figure 1).

Figure 1

Figure 1. Precipitation and temperatures in Tulancingo, Hidalgo in 2022.

2007-0934-remexca-16-05-e3743-gf2.png

The information was subjected to analysis of variance with GLM of SAS® (2010). The grouping of means was performed with Tukey (α= 0.05). Stepwise of SAS® was also used to determine which ear variable influences yield the most.

A Pearson correlation was performed with the same statistical package to find out if there is a relationship between NL, EH, NE, weight of 200 grains, and volumetric weight with grain yield (α= 0.05).

The multiple regression statistical model was: Yi= B0 + B1 X1 + B2 X2 + B3 X3 + B4 X4 + B5 X5 + B6 X6 + ϵi. Where: Yi = yield; B 0,1,2,3,4,5,6 = parameters of the regression equation; X1= independent variables (ear diameter, ear length, grain rows, grains per row, weight of total grains, weight of 200 grains); ϵi = random error.

Results and discussion

A difference (p< 0.001) was observed in PH, EH, NL and NEP (Table 2). The genetic materials H2, SLP2, and Chaltenco showed the highest PH, whereas the lowest PH was for Palomero and Huitchila (p< 0.05). No correlation was found between PH and EH (p> 0.05); in large plants, the ear(s) are not higher from the ground level, which differs with Cruz-Lázaro et al. (2009) as they observed a linear relationship between older PH and EH.

Table 2

Table 2. Morphological characteristics and days to flowering of 23 native corns in Ahuehuetitla, Tulancingo, Hidalgo.

Genetic material Plant height (m) Plant height from the ground level (m) Num. of leaves Num. of ears Days to male flowering Days to female flowering Days of flower asynchrony
L1 3 bcde 1.65 bcdefg 17 a 1 b 90.2 j 99.1 kl 8.9 fghij
L2 3 bcde 1.59 cdefgh 12 i 1 b 90.6 j 105.8 jk 15.2 bcd
H1 2.9 cdef 1.54 ab 11.9 i 1 b 123.9 a 144.2 a 15.6 bc
H2 3.4 a 1.79 efghij 15.9 bcd 1 b 118.8 b 134.4 b 20.3 a
HC3 3.1 abc 1.84 a 16 abc 1.2 ab 112.9 c 124.7 c 11.8 def
SLP1 3.3 ab 1.83 a 15.9 bcd 1 b 104.3 ef 125.9 c 18.7 ab
SLP2 3 bcde 1.65 bcdefg 13.9 fg 1.6 a 106.1 de 124.8 c 21.6 a
SLP3 2.5 hi 1.48 hij 16.2 ab 1 b 92.4 ij 108.1 fgh 15.7 bc
SLP4 3.1 bcd 1.66 bcdefg 13.8 gh 1.7 a 107.1 d 116.4 e 9.3 efg
SLP5 -2.8 efg 1.66 bcdefg 16.1 ab 1 b 105.4 de 114.3 e 8.9 fghij
P1 2.4 ij 1.44 hij 12.8 hi 1.4 ab 84.5 k 89.9 l 5.4 ijkl
P2 2.3 ij 1.39 abcde 11.9 i 1 b 111.2 c 120.2 d 9 fghi
P3 2.9 cdef 1.69 jk 12.2 i 1 b 99.4 gh 109.6 fg 10.2 efg
GS1 3.1 abc 1.57 defghij 14 efg 1.2 ab 98.9 h 111 f 12.1 def
GS2 3 bcde 1.66 cdefg 15.6 bcd 1.3 ab 101.6 fgh 121.1 d 19.5 a
GH3 2.9 cdef 1.51 fghij 14 egf 1.2 ab 85.8 k 92.1 l 6.3 hijkl
GF4 3 bcde 1.64 bcdefg 16 abc 1 b 91.4 ij 96.6 k 5.2 jkl
GLS5 2.8 fg 1.5 ghij 15 cde 1 b 92.6 ij 101.5 ij 8.9 fghij
Palomero 2.2 j 1.25 k 12.3 i 1.2 ab 78.3 l 83.1 m 4.8 l
Chaltenco 3.2 abc 1.74 abc 14.9 efg 1.3 ab 93.5 i 107 gh 13.5 cde
CMQ 2.6 gh 1.71 abcd 12.6 i 1.3 ab 101.8 fg 108.9 fg 7.1 ghijk
Huitchila 1.8 k 1.26 k 11.9 i 1 b 75 m 80 n 5 kl
Romita 2.6 gh 1.43 ij 14.9 efg 1.7 a 93.9 i 102.6 i 8.7 fghijk
Average 2.8 1.6 14.2 1.2 98.2 109.6 11.38
MSD 0.239 0.156 1.01 0.554 2.76 2.99 3.7

† = equal lowercase letters by columns are similar averages (p> 0.05).

The biggest NL at 50% anthesis was observed in L1, with 17 leaves (p< 0.05) and the lowest (with 12.8 leaves) was for P1 (p< 0.05), and no correlation was observed between NL with higher grain yield (p> 0.05), as reported by Perales and Golicher (2014). The materials with the highest NEP were recorded in SLP4 and Romita (1.7) and they were similar (p> 0.05) to SLP2, P1, GS2, GH3, GS1, Palomero, Chaltenco, and CMQ; however, in the analysis of correlation with yield, it had no influence (p> 0.05).

Male flowering and female flowering were different (p< 0.05) and flower asynchrony was observed from 5 to 22 days (Ángeles-Gaspar et al., 2022). The earliest corns were Huitchila and Palomero, with DMF at 75 and 80 das, and DFF at 78.3 and 83.1 das, respectively (p< 0.05). FA was observed because there were 40 days between the last irrigation and the rainy season. The genotype with the highest FA was SLP2 at 26 days (p< 0.05) and the lowest was Palomero with 5 days.

There was a difference in grain yield in the 23 corn genetic materials evaluated in Tulancingo (p< 0.05) (Table 3). The highest grain yield was shown by P3, with 6 782 kg ha-1 and it was 1.05, 1.08, 1.13, 1.12, and 1.17 times the grain yield of L2, Romita, P1, Chaltenco, and Huitchila, respectively (p> 0.05); L2 (originally from Tulancingo) is among the outstanding materials. Arellano et al. (2018) reported 4.3 to 12 t of corn grain in several localities in the state of Mexico and Tlaxcala.

Table 3

Table 3. Productive and morphological characteristics of ears and grains of 23 corn genotypes established in Ahuehuetitla, Tulancingo, Hidalgo, Mexico.

Code genotype Grain yield (kg ha-1) Weight of 200 grains (g) Volumetric weight (g hl-1) Ear diameter Ear length Num. of rows Grains per row Total grains per ear
L1 4 323 de 69.08 ef 61.2 ghi 14.5 bcdefg 11 b 12.9 cdef 22.9 cdef 293 def
L2 6 484 a 83.58 bc 59.6 jk 16 abc 13.3 ab 12.6 cdefg 27.2 abcdef 341 cdef
H1 2 622 i 42.03 jkl 60.2 ijk 12.3 ghi 13.3 ab 10.7 efgh 27.7 abcdef 296 def
H2 3 077 ghi 39.55 lm 61.7 fgh 11.8 i 13.3 ab 10.8 efgh 29.6 abcd 321 def
HC3 3 255 fghi 41.24 klm 66.2 bc 11.9 hi 13.2 ab 10.2 fgh 33.9 a 345 bcdef
SLP1 4 052 de 55.28 hi 60.05 ijk 14.5 bcdef 12.7 ab 12.6 cdefg 23.6 cdef 298 def
SLP2 5 931 de 60.13 hg 61 ghi 16.4 ab 13.8 ab 13.3 cde 29.2 abcd 388 abcd
SLP3 4 138 ef 56.89 hi 64 e 14 cdefgh 11.3 b 13.4 bcde 22.4 def 304 def
SLP4 4 328 ef 66.63efg 60.7 hij 13.99 cdefgh 14.9 a 12.1 cdefg 24.8 bcdef 303 def
SLP5 4 258 efg 48.75 jkl 66.8 b 13 fghi 13 ab 12.1 cdefg 26.2 abcdef 316 def
P1 6 007 abc 80.96 cd 62.6 fgh 16.3 ab 13.2 ab 11.9 cdefg 25.1 bcdef 298 def
P2 4 084 ef 49.74 ijk 61.6 fghi 13.3 defghi 12.7 ab 13.1 cdef 28.4 abcde 371 bcd
P3 6 782 a 60.02 hg 64.7 f 15.1 abcde 13.3 ab 14.4 bc 31.9 ab 461 abc
GS1 3 402 efghi 72.66 de 61.9 gf 13.9 cdefghi 12.9 ab 11.2 defg 20.7 ef 231 fg
GS2 5 455 bc 94.49 a 64.1 e 14.3 bcdefg 12.9 ab 10.1 fgh 22.1 def 224 fg
GH3 5 157 cd 50.92 ij 65.3 bcd 15.9 abc 11.7 b 17.9 a 26.1 abcdef 470 ab
GF4 3 900 efg 70.34 ef 57 i 17.2 a 13.4 ab 13.7 bcde 24.8 bcdef 334 cdef
GLS5 2 703 i 62.94 fgh 56.3 i 15.4 abcde 11.8 b 14.1 bcd 26 abcdef 359 bcde
Palomero 3 813 efgh 32.39 m 70.7 a 13.3 efghi 12.1 ab 16.5 ab 30.8 abc 511 a
Chaltenco 6 067 abc 82.74 c 62.5 f 15.5 abcd 13.8 ab 12.4 cdefg 26.1 abcdef 325 def
CMQ 2 828 hi 89.73 abc 53.8 m 13 fghi 12.8 ab 8.3 h 19.8 f 163 g
Huitchila 5 801 abc 92.33 ab 59.3 k 15.5 abcd 12.4 ab 9.6 gh 24.9 bcdef 242 efg
Romita 6 305 ab 61.65 fgh 61.1 ghi 15.7 abc 13.4 ab 14 bcd 27 abcdef 378 bcd
Average 4 555 63.66 61.9 14.5 12.9 13 26 329
MSD 991 8.94 1.16 2.2 2.95 3.09 7.9 127.1

† Literals with equal lowercase letters per column are similar averages (p> 0.05).

According to Espinosa et al. (2019), the yield of corn grain responds differently in contrasting environments due to its wide intra-population genetic variation and good behavior per se. Regarding the weight of 200 grains, the highest value was observed in GS2 (94.4 mg) and it was similar to CMQ and Huitchila (p> 0.05), whereas the lowest value occurred for SLP1 and SLP2, with 55.28 and 56.89 mg, respectively. Therefore, Velasco et al. (2022) found no relationship between the weight of 200 grains and higher yield; they attributed the higher yield to more ears per plant.

Likewise, Aguilar-Carpio et al. (2022) reported 41 g in 100 grains (range of this study) and attributed weight to higher nutrition with N. The highest volumetric weight was observed in Palomero (70.6 kg hl-1; p< 0.05) and the lowest in CMQ (53.8 kg hl-1; p< 0.05); this variable is not correlated with higher yield (p> 0.05), an effect that was related by Velasco et al. (2022), which happened in Palomero. According to Widholm et al. (2014), the filling of mealy and vitreous endosperm depends on climatic conditions and nutrition.

The highest ED was observed in GF4 (17.2 cm; p< 0.05), but it was similar (p> 0.05) to L2, SLP2, P1, P3, GH3, GLS5, Chaltenco, Huitchila, and Romita; however, the ED of GF4 was 1.08, 1.05, 1.06, 1.08, 1.12, 1.1, 1.11, 1.1 and 1.09 times the ED of the aforementioned genotypes, respectively (p> 0.05), whereas the lowest ED was observed in H2 (11.8 cm).

The EL was higher in SLP4 (14.8 cm), and the lowest values were in L1, SLP3, GH3 and GLS5, 11.0, 11.3, 11.7, 11.8 respectively (p> 0.05). Therefore, Cabrera-Toledo et al. (2019) comment that EL and ED have been desirable characteristics that producers have selected for decades since each agroecological site rotates corns due to their productivity in grain or forage (Sánchez-Hernández et al., 2021; Hortelano et al., 2012); nevertheless, native corns lodge during strong winds and machinery cannot ensilage (Rodríguez Ortega et al., 2024).

In the analysis of variance of the stepwise regression for ear variables, the parameters of the independent variables are different (p< 0.0001) with R2= 40.6%; the variation in grain yield is explained by the model, this percentage can be considered acceptable and confirms the genetic diversity of the 23 native corns.

The influence of ED was 28%, whereas that of NGE and weight of 200 grains was 34%. The prediction equation obtained for grain yield is: y= -2135.77 + 203.96 (diameter) + 4.92 (total grains) + 33.31 (weight of 200 grains). The yield was partly explained by ED, NGE, and weight of 200 grains (p< 0.0001). On the other hand, EL, NH NR, and NGR were not important explanatory variables.

Evaluating native corn genetic materials from other sites in Tulancingo made it possible to select and conserve germplasm for future generations. Sánchez-Hernández et al. (2021) evaluated native corns from Loma Bonita, Oaxaca, Mexico, and found that native corns outperformed the control in PH, leaf area, stem diameter, and forage, and according to González-Martínez et al. (2020), the morphological, phenological, and variability characters of ear support morphological variability, as occurred in this study.

Conclusions

In the assessment of 23 corn genotypes in Tulancingo, Hidalgo, corn from Rancho Gamboa-Atlixco, Huitchila, La Lagunilla, and Romita stands out for grain yield. The yield is influenced by ear diameter by 28%, whereas the number of total grains and weight of 200 grains explain 34%.

Bibliography

1 

Aguilar-Carpio, C.; Escalante-Estrada, J. A. S.; Aguilar-Mariscal, I. y Rojas-Victoria, N. J. 2022. Rentabilidad y rendimiento de tres genotipos de maíz en respuesta al biofertilizante y nitrógeno, en clima templado. Biotecnia. 24(2):77-83. https://doi.org/10.18633/biotecnia.v24i2.1603.

2 

Álvarez-Vázquez, P.; Rojas-García, A. R.; Joaquin-Cancino, S.; Velázquez-Martínez, M.; Rodríguez-Ortega, L.T. y Hernández-Guzmán, F.J. 2022. Producción de forraje y semilla de ocho pastos al establecimiento en Tulancingo, Hidalgo. Revista Mexicana de Ciencias Agrícolas. 13(6):1041-1053. https://doi.org/10.29312/remexca.v13i6.3027.

3 

Ángeles-Gaspar, E.; Ortiz-Torres, E.; López, P. A. y López-Romero, G. 2010. Caracterización y rendimiento de poblaciones de maíz nativas de Molcaxac, Puebla. Revista Fitotecnia Mexicana. 33(4):287-296. https://doi.org/10.35196/rfm.2010.4.287.

4 

Arellano, V. J. L.; Virgen, V. J. y Rojas, M. I. 2018. Gacela H72: híbrido de maíz precoz para áreas de temporal y riego del Altiplano Central de México. Revista Mexicana de Ciencias Agrícolas. 9(6):1303-1310. https://doi.org/10.29312/remexca.v9i6.1590.

5 

Cabrera-Toledo, J. M.; Carballo-Carballo, A.; Mejía-Contreras, J. A.; García-Santos, G. y Vaquera-Huerta, H. 2019. Caracterización de poblaciones sobresalientes de maíz de la raza zapalote chico. Revista Fitotecnia Mexicana. 42(3):269-279. https://doi.org/10.35196/rfm.2019.3.269.

6 

Cruz-Lázaro, E.; Córdova-Orellana, H.; Estrada-Botello, M. A.; Mendoza-Palacios, J. D.; Gómez-Vázquez, A. y Brito-Manzano, N. P. 2009. Rendimiento de grano de genotipos de maíz sembrados bajo tres densidades de población. Universidad y Ciencia. 25(1):93-98. https://www.scielo.org.mx/pdf/uc/v25n1/v25n1a7.pdf.

7 

Espinosa, T. L. C.; Rincón, S. F.; Ruíz, T. N. A.; Martínez, R. J. M. y Benavides, M. A. 2019. Respuesta ambiental de poblaciones nativas de maíz del sureste de Coahuila, México. Nova Scientia. 11(23):108-125. https://www.scielo.org.mx/pdf/ns/v11n23/2007-0705-ns-11-23-00006.pdf.

8 

García, A. E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de México. México, DF. 90 p.

9 

González-Martínez, J.; Rocandio-Rodríguez, M.; Contreras-Toledo, A. R.; Joaquín-Cancino, S.; Vanoye-Eligio, V.; Chacón-Hernández, J. C. y Hernández-Bautista, A. 2020. Diversidad morfológica y agronómica de maíces nativos del Altiplano de Tamaulipas. Revista Fitotecnia Mexicana. 4(43):361-370. https://revfitotecnia.mx/index.php/RFM/article/view/811

10 

Hortelano, S. R. M.; Gil, M. A.; Santacruz, V. A.; López, S. H.; Antonio, L. P. y Miranda, C. S. 2012. Diversidad fenotípica de maíces nativos del Altiplano Centro-Oriente del Estado de Puebla, México. Revista Fitotecnia Mexicana. 35(2):97-109. https://revfitotecnia.mx/index.php/RFM/article/view/517.

11 

INEGI. 2017. Instituto Nacional de Estadística y Geografía. Anuario Estadístico y Geográfico de Hidalgo. Ciudad de México. 671 p.

12 

Perales, H. and Golicher, D. 2014. Mapping the diversity of maize races in Mexico. PLoS ONE. 9(12):e114657. 10.1371/journal.pone.0114657.

13 

Quero-Carrillo, A. R.; Hernández-Guzmán, F. J.; Pérez-Rodríguez, P.; Hernández-Livera, A.; García-Santos, G.; Landa-Salgado, P. y Ramírez-Sánchez, S. E. 2017. Germinación de cariópsides clasificados por tamaño y diásporas de cuatro pastos para temporal semiárido. Revista Mexicana de Ciencias Agrícolas. 40(1):489-502.

14 

Rodríguez-Ortega, L. T.; Landa-Salgado, P.; Velázquez-Martínez, M.; Hernández-Martínez, R.; Mendoza-Pedroza, S. I.; Hernández-Guzmán, F. J.; Hernández-Reséndiz, E. J. 2024. Rendimiento de forraje, grano y calidad de ensilado de maíces híbridos en el Valle de Tulancingo, México. Revista Fitotecnia Mexicana. 47(4):349-358.

15 

Sánchez-Hernández, M. A.; Morales-Terán, G.; Mendoza-Pedroza, S. I.; Hernández-Bautista, J.; Fraire-Cordero, S. y Rivas-Jacobo M. A. 2021. Caracterización de maíces nativos con aptitud forrajera en la Cuenca Baja del Papaloapan. Revista Fitotecnia Mexicana. 44(4A):755-764. https://revfitotecnia.mx/index.php/RFM/article/view/908.

16 

SAS. Instituto. 2010. SAS/STAT User’s Guide Version 9.2. SAS Institute Inc. Cary, North Carolina, USA. 5136 p.

17 

SNICS. 2022. Servicio Nacional de Inspección y Certificación de Semillas. Guía para la descripción de variedades nativas maíz (Zea mays L.). Secretaría de Agricultura y Desarrollo Rural. Ciudad de México. 34 p. https://www.gob.mx/cms/uploads/attachment/file/891830/GuiaMaizNativo2024-final.pdf.

18 

Vega, A. I.; Flores, S. D.; Escalona, M. M. J.; Castillo, G. F. y Jiménez, V. M. A. 2022. Tlaxcala, investigación en maíz nativo y mejorado: problemática, campos del conocimiento y nuevos retos. Revista Mexicana de Ciencias Agrícolas. 13(3):539-551. https://doi.org/10.29312/remexca.v13i3.2888.

19 

Velasco, M. S.; Tadeo, R. M.; Espinosa, C. A.; Zaragoza, E. J.; Canales, I. E. y Coutiño, E. B. 2022. Rendimiento de grano, forraje y calidad forrajera de nuevos híbridos de maíz de Valles Altos. Revista Mexicana de Ciencias Agrícolas 13(1):77-87. https://doi.org/10.29312/remexca.v13i1.2398.

20 

Widholm, J. M.; Kumlehn, J. and Nagata, T. 2014. Biotechnological approaches to barely improvement. Biotechnology in Agriculture and Forestry. Volume 69. Kumlehn, J. and Stein, N. Ed. Springer. Heidelberg. 426 p.