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Abstract
Knowledge of the soil carbon stock (SCS) is vital for appropriate farming practices management, ie. 
tillage and to monitor SCS changes as mitigation strategies of carbon footprint. This study aims to 
quantify the variability and spatial distribution of the SCS. In an area of 1 ha 45 micro-pit (1 x 0.8 x 
1 m) were divided into four strata. Vertical distribution of soil carbon was quantified along with 
other chemical and physical soil properties that affect rice production in Parrita, Costa Rica. A 
map of spatial prediction of the distribution and goodness-of-prediction values were calculated 
to estimate the effectiveness of the SCS prediction when different numbers of sampling points 
were used 45, 27, 15 and 7 microplots. As accurate measurements, the Mean Absolute Error and 
the Mean Square Error were calculated. In this study, the SCS was 85.8 (±2.6) Mg C ha-1, into 
the total profile (0-100 cm), where the first 30 cm represented 46.2%. Prediction of the spatial 
distribution suggests that in annual agricultural crops, with tillage systems 15 sampling points 
ha-1 a can effectively estimate the SCS.
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Introducon
Soils are critical for climate change mitigation as they represent the largest carbon (C) reservoir
in the terrestrial biosphere (Zomer et al., 2017). While initiatives promoting soil C sequestration
are emerging (FAO, 2019), tree-based C fixation dominates C credit markets (Valderrama et al.,
2018). These markets, shaped by voluntary programs and policies such as the EU emissions trading
scheme, the Paris Agreement, and 4 per 1 000 initiative (Lal, 2016), require robust platforms for
soil C monitoring and verification at scale (Smith et al., 2020).

Accurate soil carbon stock (SCS) estimation demands appropriate spatial and temporal resolutions,
along with standardized global protocols (FAO, 2020). Understanding C and nitrogen (N) stock
variability is essential to analyse how agricultural practices, particularly tillage, impact soil
properties. This enables the identification of optimal soil management strategies to enhance crop
production while preserving soil health. Determining initial soil C levels is crucial for establishing
baseline conditions to assess C changes, retention, and loss (Nayak et al., 2019).

Soil C distribution within the profile is heterogeneous (Jandl et al., 2014), influenced by factors like
root distribution, land use, and soil properties (Yu et al., 2019). While C accumulates in deeper
layers (30-100 cm) (Aguilera et al., 2013; Oliveira et al., 2016), common sampling depths (20-40 cm)
may be insufficient for accurate C monitoring (FAO, 2019). Shallow sampling can lead to inaccurate
assessments, particularly regarding erosion (Davis et al., 2018). In Costa Rica, the Recsoil initiative,
focusing on livestock and coffee sectors, utilizes 30 cm sampling depth. However, the applicability
of this protocol in annual cropping systems requires further evaluation for broader implementation
(FAO, 2024).

Appropriate sampling depth increments are crucial for accurately quantifying C changes. Common
techniques include sampling by soil horizon, which can be challenging due to varying soil taxonomy
guidelines or by fixed depth (Davis et al., 2018). To account for spatial variability, sampling
methodologies must consider factors such as sampling point distance and depth. Geostatistical
methods, such as Kriging, are effective for quantifying spatial distribution and predicting soil C (Wen
et al., 2015; Ahmed et al., 2022).

The objectives of this study were quantifying the vertical distribution of soil C across the soil
profile (0-100 cm) and determine the optimal number of samplings to quantify SCS by the spatial
interpolation technique. We hypothesize that soil properties, such as C content, can be predicted
through the combined use of statistical and geostatistical methods. This approach aims to determine
the optimal number of sampling points required to capture spatial variability (fewer than 15 points
per hectare), thereby optimizing resources and improving sampling efficiency.

Material and methods

Study site
The study was carried out in the Costa Rican Central Pacific, at the experimental farm of the National
Rice Corporation in Parrita, Puntarenas (9° 30’ 55.02” N, 84° 22’ 2.56” W). The area classified as
a Tropical Humid Forest (L. Holdridge life zone system) presents an average annual temperature
of 27 °C (max. 32.5 °C and min. of 22.5 °C), with average annual precipitation of 2 000 to 3 000
mm year-1 (Alvarado-Velas et al., 2021).

The soil was classified as Fluventic Haplustepts with a medium coarse texture. It is an alluvial
Inceptisol, characterized by being colluvial from the Pirris River, with an ustic climatic regime, low
organic matter, medium to high fertility, medium to fine surface granulometry in depth and the
presence of rocky outcrops, for agricultural use see other soil properties on supplementary material
(Table 1).

DOI: https://doi.org/10.29312/remexca.v16i5.3664

elocation-id: e3664 2

https://doi.org/10.29312/remexca.v16i5.3664


Table 1. Physical and chemical characteriscs of the soil of the experimental plot located in the 
Conarroz Experimental Farm, Parrita, Costa Rica (n= 9).

Depth (cm) Bult density Ksat C pH EC Sand Clay Silt

10 1.2 ±0.02 0.14 ±0.02 1.24 ±0.03 5.86 ±0.06 0.16 ±0.01 33 ±2.87 30.04 ±1.52 37.09 ±2.46

30 1.26 ±0.01 0.1 ±0.02 0.83 ±0.04 6.2 ±0.04 0.14 ±0.01 35.58 ±2.97 32.24 ±1.81 32.38 ±2.29

50 1.28 ±0.01 0.07 ±0.02 0.63 ±0.03 6.37 ±0.04 0.13 ±0.01 37.67 ±2.85 32.64 ±1.94 29.89 ±2.44

80 1.27 ±0.01 0.05 ±0.01 0.39 ±0.02 6.33 ±0.04 0.13 ±0.01 41.36 ±2.91 29.64 ±1.45 29.11 ±2.57

Experimental design
In 2019, 45 sampling points were established across a 1 ha area with approximately 15 m spacing 
to assess spatial soil property variability. A 1 x 0.8 x 1 m pit was made at each point. The pit was 
divided into four strata: 0 to 20 cm, 20 to 40 cm, 40 to 60 cm and 60 to 100 cm, with samples 
taken in the middle of each profile (10, 30, 50 and 80 cm) for chemical and physical analysis. To 
calculate de SCS we use the strata 0-30, 30-60 and 60 to 100 cm according to FAO (2020) and 
to ease comparison with other schemes that use 0-30 depth, values were interpolated from the 
original strata concentrations.

Physical and chemical properes
Texture analysis was done using the modified hydrometer method. Bulk density was determined 
with undisturbed samples, for which 8 x 5 cm, cylinders were used. The saturated 
hydraulic conductivity (HC) was determined through the constant water column method, in 8 x 5 
cm cylinders. pH and electrical conductivity (EC) (Mettler Toledo brand, SevenGo Duo pro model) 
were measured in 1:1 H2O.

Total C and N content were determined by dry combustion (Duma’s method) using a vario Macro 
cube CN analysers (Elementar Analyse Systeme GmbH, Germany). As the data was not normally 
distributed, differences among depths for all the measured variables were tested for significance 
using the non-parametric Kruskall-Wallis H-test, and when there was a significant (p value 0.05) 
Tukey-Kramer test.

The Pearson correlations significance levels was determinate to find relationship between pairs 
of variables. All statistical analyses were performed in the R Studio program version 1.1.463 
interface (RStudio Team, 2020). Moran’s, I index with nominal values of 10 cm, 30 cm, 50 cm, 
and 80 cm was used to analyse the degree of spatial autocorrelation of the variables. This 
index examines the location of each observation based on a comparison with its neighbouring 
observations (Wu et al., 2024).

Soil carbon and soil total nitrogen (STN stocks
Stocks were estimated based on C and N concentrations and the volume and density of each soil 
layer according to FAO (2022). Differences in the effect of depth on SCS and STN were evaluated 
through a separation of the total stock (measured at 100 cm) in three measurement strata. We 
examined the differences between measurement strata using a one-way Anova and when there was 
a significant (p value= 0.05), an analysis with the Tukey’s honest significant difference’s function 
was performed.

Opmizaon of soil sampling by geostascal analysis and predicon
comparison
The spatial distribution of soil C and N stock was examined by interpolation maps with ArcMap 10.5 
and QGIS 3.12.3 with Grass 7.8.3 software, using the geostatistical interpolation ordinary kriging.
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It is assumed that the data closer to a point of interest have greater weight or influence on the
interpolation, this method is widely used when the sampling intensity is high, and it is also a good
option when there is a minimum distance in the data (Bhunia et al., 2018).

A map of prediction of spatial distribution of soil C was made with differences in the number of
sampling points: 45, 27, 15 and 7. Comparison of predictions was based on measures of accuracy:
the mean absolute error (MAE), the mean squared error (MSE) and the goodness-of-prediction (G)
(Schloeder et al., 2001).

Results

Variability of physical and chemical properes
Spatial variability in C, N, pH, bulk density, HC, and EC was most pronounced in the top 10 cm
(Figure 1). Total C and N contents peaked at 1.23% (±0.03) and 0.15% (±0.003) in the top 10 cm,
respectively, and decreased with depth, reaching minima of 0.39% (±0.02) and 0.07% (±0.002) at
the deepest stratum. C distribution was homogeneous across all strata, whereas N content varied
within the plot.

Figure 1. Spaal distribuon a) total carbon content (%C); b) total nitrogen content (%N); c) bulk density 
(g cm-3); d) hydraulic conducvity (cm h-1); e) pH and f) electrical conducvity (mS cm-1) made by Kriging 
interpolaon (n= 45) at Experimental Farm in Parrita, Costa Rica. Values on the top (10, 30, 50, 80 cm) 

are the midpoint in the soil categories sampled as previously described in the methodology.

Bulk density showed values greater than 1 g cm-3, increasing from 1.2 g cm-3 (±0.01) at top stratum
to 1.28 (±0.01) at 50 cm, the highest value recorded through the profile (Figure 1c). This stratum
had high variability in the horizontal distribution. The HC decreased through the soil profile, from
0.14 cm h-1 (±0.02) to 0.048 cm h-1 (±0.01), maintaining horizontal homogeneity in the plot. At 80
cm, the distribution was uniform with values close to zero (Figure 1d).
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Soil pH increased with depth, from 5.89 (±0.06) at 10 cm to 6.33 (±0.04) at 80 cm (Figure 1e),
exhibiting horizontal heterogeneity with higher values westward. EC showed uniformity across the
plot, gradually decreasing with depth, from 0.16 mS cm-1 (±0.01) in the topsoil to 0.13 mS cm-1

(±0.01) (Figure 1f). Clay content initially increased from 30% (±1.5) to 32.2% (±1.8) but decreased
to a minimum of 29.6% (±1.5) below 50 cm depth. Sand content exhibited a nearly linear increase
from 33% (±2.9) in the topsoil to 41.4% (±2.9) in the deeper stratum.

Silt content declined with depth (37.1 ±2.5% at 10 cm versus 29.1 ±2.6% at 80 cm depth). HC
exhibited the highest correlation with other variables supplementary material (Table 2), showing
positive correlations with C, N, EC, and clay. Sand content correlated positively with bulk density
(r=0.306, p< 0.01), pH (r= 0.464, p< 0.01) and EC (r= 0.053, p< 0.05). As anticipated, the strongest
Pearson correlation was between C and N (r= 0.957, p< 0.01).

Table 2. Analysis of the Pearson correlaon coefficient between soil parameters at the Conarroz 
Experimental Farm in Parrita, Costa Rica.

Bult density HC Carbono Nitrógeno pH EC Sand Clay Silt

Bult density 1

HC -0.195** 1

Carbon -0.498*** 0.329*** 1

Nitrogen -0.484*** 0.34*** 0.957*** 1

pH 0.356*** -0.217** -0.599*** -0.6*** 1

EC -0.002* 0.041* 0.054* 0.097 -0.048* 1

Sand 0.306*** -0.238** -0.342*** -0.392*** 0.464*** 0.053* 1

Clay -0.096* 0.038* 0.126* 0.161* -0.195** -0.006 -0.531*** 1

Silt -0.293*** 0.252*** 0.316*** 0.35*** -0.414*** -0.058 -0.816*** -0.056* 1
* = significance level at 5%; **= significance level at 1%; ***= significance level at 0.1%; HC= hydraulic 

conductivity; EC= electrical conductivity.

Regarding to global Moran’s index spatial autocorrelation, C, N, HC and pH, exhibited weak spatial
association in the first 10 cm (C: 0.34, N: 0.34, HC: -0.11 and pH: 0.29), reached the strongest
spatial autocorrelation at 30 cm (C: 0.64, N: 0.69, HC: 0.32, pH: 0.49), variables that diminishes
again at 50 cm and 80 cm depths, as indicated by a low Z value (Z value <4.02).

Bulk density and EC exhibited consistently low spatial autocorrelation across all soil strata. Bulk
density autocorrelation values ranging from 0.26 to -0.18, peaking at 50 cm (0.26) yet remaining
insufficient for high spatial association. Similarly, EC maintained the trend of low autocorrelation in
all depths with values ranging from 0.37 to -0.03.

Soil carbon and nitrogen stocks
In the total profile (0-100 cm), the SCS was 85.8 (±2.6) Mg C ha-1 (Figure 2a) with a maximum C
value at the first 10 cm. Soil C decreased with depth, with the highest C content (46.2%) in the top
30 cm (39.64 ±0.86 Mg C ha-1), whilst 30 to 60 cm represented 24.3% (20.93 ±0.81 Mg C ha-1) and
60 to 100 cm the remaining 23.1% (19.77 ±0.95 Mg C ha-1) of the SCS.
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Figure 2. a) soil carbon stock (Mg C ha-1); b) soil carbon density (g C cm-3); c) nitrogen stock (Mg N 
ha-1) and d) nitrogen density (g C cm-3) at 30, 60 and 100 cm depth at Experimental Farm in Parrita, Costa 

Rica (n= 15).

The STN stock was 11.54 (±0.36) Mg N ha-1 (Figure 2c). As expected, the STN stock decreases
more lineally with depth than soil C. The STN content showed a significant difference between
strata, 0 to 30 cm accounted for 44.2% (3.52 ±0.12 Mg N ha-1), 30 to 60 cm represented 31.3% (5.1
±0.09) Mg N ha-1 and 60 to 100 cm represented 24.9% (2.87 ±0.2 Mg N ha-1).

The C and N densities were estimated to avoid the effect of soil layer thickness on the stock
assessment. Both C and N densities decreased with depth (Figure 2b; 2d) from a maximum of 1.46
g C cm-3 (±0.026) and 1.85 g N cm-3 (±0.029) at 10 cm, respectively to a minimum value of 0.49 g
C cm-3 (±0.02) and 0.69 g N cm-3 (±0.06) at 80 cm depth.

Opmizaon of sampling effort
The effect of sampling effort on SCS predictions showed an important reduction when samples
were reduced from 45 to 27, but the variability prediction did not change with 15 or 7 samples. SCS
distribution kept constant at 0-100 cm when reducing the number of samples from 45 to 7 (Figure 3).
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Figure 3. Spaal distribuon of soil carbon stocks (Mg C ha-1) by interpolaon using Kriging method (n= 
45, n= 27, n= 15 and n= 7) at Experimental Farm in Parrita, Costa Rica.

For SCS at 0-30 cm and 0-100 cm soil profiles, 20 m between sampling points (ie. 15) reached a
prediction effectiveness of 99.38 and 99.98, respectively, given almost a perfect prediction. For a
lower distance (15 m) between sampling points (ie. 45) the values turn negative (-5.83 and 61.52
at 0-30 cm and 0-100 cm, respectively) showing that it would have been better to use the general
mean than the prediction supplementary material (Table 3).

Table 3. Predicon effecveness of distance values (G %), using the ordinary Kriging method for soil 
carbon stocks of 0-30 cm and 0-100 cm with differences between sampling points (45, 27, 15 and 7).

G (%)Sampling points Distance between

points (m) 0-30 cm 0-100 cm

45 15 -5.83 61.52

27 17 69.92 84.98

15 20 99.38 99.97

7 45 0.01 5.12

Discussion

Variability of physical and chemical properes
Distribution at different soil depths and can be differentially affected by factors such the texture. Our
study, like Chatterjee et al. (2020), suggest the silt and clay content in soil had a relation with the
soil C, supported by a positive Pearson correlation of C with these textural elements particularly
with silt (Augustin and Cihacek, 2016; Matus et al., 2021).

According to Zhong et al., (2018), changes in SCS and clay dynamics in a smaller scale may be
related to vegetation and soil nutrient dynamics. The correlations observed between the variable’s
supplementary material (Table 2) are somehow masked by the effect of the agricultural practices.
As expected, C and N have a strong and positive correlation (0.957), but the correlations between
the physical and chemical variables are less clear.

Correlations between HC, C, N and clay could have to do with the effect that these elements
have on the aggregation of soils and their structure formation. Interestingly, N, pH and bulk
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density exhibit homogeneity in the upper layer but significant variability deeper, suggesting that
surface homogeneity is likely influenced by management practices such as fertilization and tillage
(Lawrence et al., 2020).

Soil carbon and nitrogen stocks
While SCS has been studied across various land uses in Costa Rica (Chacón et al., 2015; Sherman
and Brye, 2019; Chatterjee et al., 2020), research on upland rice systems is limited. Our results
show that the highest total C and N accumulation occurs in the topsoil and decreases rapidly with
depth at a rate of 0.01% C cm-1. In particular, the C stock at 0-30 cm (39.64 ±0.86 Mg C ha-1) is
lower than the one observed by Xu et al. (2013) (59.7 Mg C ha-1 0-20 cm), but comparable to Chen
et al. (2021) (13.7 Mg C ha-1 0-15 cm) and Anantha et al. (2018) (20.7 Mg C ha-1 0-15 cm) in upland
rice systems.

For upland rice farms, the 0-30 cm depth, utilized by Recsoil (FAO, 2019) constitutes 46.2% of the
1 m stock. Our results confirm that in uniformly managed fields, most of the SCS is located within
the topsoil (0-30 cm), the primary zone for crop roots, nutrient cycling and water use efficiency
(Gregory et al., 2016).

So, it is likely that working at a 30 cm depth is enough for rice, given its shallow root systems primarily
distributed within the 0-20 cm layer, especially in 0-10 cm layer, where root biomass constitutes
over 80% of the whole biomass (Li et al., 2020), particularly in the presence of a compacted layer,
as observed in this productive system (Figure 1c).

Despite the potential of subsoil to protect C from losses (Tautges et al., 2019), soil C measurement
depths below 30-40 cm are uncommon (Tautges et al., 2019). While the estimation of SCS to 1 m in
the subsoil is often presumed stable, it can hold importance in long-term management experiments
(Gregory et al., 2016). Nitrogen stock is overlooked due to its strong correlation with C content
(Averill and Waring, 2018; Li et al., 2023).

Nevertheless, it is notable that at our site, the N stock from 0-30 cm is only 30% higher than the one
from 30-60 cm and the one from 60-100 cm. This could be attributed to N fertilization that impact the
top layer, and the tendency for N to move in the profile, less influenced by root growth compared to
C movement (Börjesson et al., 2018; Ojeda et al., 2018), particularly beyond the compacted layer.

Opmizaon of sampling effort
Determining the appropriate sample size is crucial for accurate and precise field study (Nayak et al.,
2019; Lawrence et al., 2020). The results for the interpolation using the kriging method have proven
to be effective in interpolating C soil, leading to 66% reduction in sampling with 15 samples ha-1.
Kriging effectively interpolated soil C, allowing a 66% reduction in sampling from 45 to 15 samples
ha-1 in our small, homogeneous area, particularly when considering the 1 m depth profile. Bogunovic
et al. (2017) propose similar reductions (50 to 70 %) using co-kriging with auxiliary variables.

Low autocorrelation observed for C, N, HC, and pH in the top 10 cm reflects their high variability and
susceptibility to agricultural practices (Usowicz and Lipiec, 2021), what is curious about this result
is that this autocorrelation decreases at 30 cm and increases again at 50-60, this could suggest an
effect of mechanization since these soils are characterized by serious compaction at around 20 cm.

Sampling intensity should vary based on the variable and study objectives (Nayak et al., 2019).
Topsoil requires denser sampling due to its sensitivity to inputs. However, for less spatially variable
parameters like HC and EC, sampling intensity can be reduced (Usowicz and Lipiec, 2021).

Conclusions
Kriging effectively interpolated C stock, enabling a 66% reduction in sampling effort to 15 samples
ha-1 for 1 m depth estimations. Physical variables exhibit lower spatial variability, allowing for
reduced sampling compared to chemical variables. Our findings demonstrate significant potential
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for reducing human effort and associated costs in SCS estimation. For small, homogeneous fields,
the use of composite samples warrants further investigation as a potential alternative to individual
samples.
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