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Abstract
Corn (Zea mays L.) is the basis of food and culture in the state of Mexico, so estimating its production
to sustain a growing population is a current need. Therefore, images obtained by ESA Copernicus’
Sentinel 2 were used to estimate corn yield in plots in the localities of Las Arenas, Acambay, state
of Mexico. The efficiency of various indices and biophysical indicators calculated with information
from these images was tested to establish their correlation against the harvest measured in the
field. The indices calculated in Sentinel 2 were: NDVI and EVI and the LAI and FAPAR indicators.
In this region and under conditions of intense drought, the NDVI calculated in Sentinel 2 had the
best predictive ability for corn yield (model fit r2= 0.79). Based on the correlation, the production of
10 randomly selected plots was estimated, demonstrating that, in the range of values between 0.4
and 0.5, NDVI is an excellent predictor of corn harvest under drought conditions, whereas higher
NDVI values tend to overestimate yield by up to 1 t ha-1. This information is useful for estimating
the harvest and insurance of agricultural production.
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Introducon
Estimating the yield of grain corn, in order to guarantee the production required to feed a constantly
growing population, is of utmost relevance. Crop yield prediction is a priority to increase knowledge
of climate/crop relationships and to generate information that can be used in timely planning and
production management (Hernández and Caballero, 2009). Yield estimation techniques diversified
with the design of satellite technology, giving rise to a range of possibilities that include, in addition
to procedures based on mathematical crop simulation models, those that use satellite information
exclusively and others that integrate both (Weiss et al., 2001; Doraiswamy et al., 2003).

The yield of a plot is a multifactorial phenomenon, in which soil and climatic components intervene,
interacting with management practices. The characteristic spectral response of plants during their
production and growth process is very specific and has been widely documented. In essence,
healthy vegetation has a low response in the red region of the visible spectrum and very high in
the infrared region of the spectrum (Chuvieco, 2002; Manzo and Meave, 2003). The difference in
response between these two regions has led to the development of various vegetation indices, the
value of which can be considered an indicator of the state of vegetation health.

Since plant reflectance has a high correlation with crop health status, there is a significant
relationship between vegetation spectral indices and their yield (Cruz-Durán et al., 2011).
Vegetation indices have been documented to be sensitive to vegetation changes in terms of
physiological development (Asrar et al., 1984; Kolotii et al., 2015). Each vegetation index has its
own limitations, hence the importance of combining indices and biophysical indicators.

Biophysical indicators are variables that can be used to evaluate vegetation stress and forecast
agricultural yields. The leaf area index (LAI) calculates the area of leaves per unit of soil area,
whereas the fraction of absorbed photosynthetically active radiation (FAPAR) quantifies the solar
radiation absorbed by plants within the photosynthetically active spectral region (Ovando, 2021).
LAI is closely related to plant productivity and biomass, a higher value indicates better canopy
development and therefore higher potential yield (Hu et al., 2014). For its part, FAPAR is an
indicator of photosynthetic activity and vegetation productivity. By being directly related to the
energy absorbed by plants for their growth, it can complement other indices (Qin et al., 2018).

Several studies around the world have tested the performance of vegetation indices calculated in
Sentinel-2 (Huang et al., 2014; Xu et al., 2022). For example, Xiuliang et al. (2020) report that the
three-band water index (TBWI) was ideal for estimating corn biomass, establishing the relationship
between biomass and leaf area index at various stages of growth. For their part, Chi et al. (2022)
estimated corn biomass in the province of Jilin, China, by using Sentinel-1 and Sentinel-2 indices
and biophysical variables, and they found that the difference of cross-polarizations in Sentinel-1
provides a more accurate estimate of biomass (R2= 0.81-0.83, RMSE= 0.4-0.41 kg m-2) than models
based on simple polarizations, and they combine predictors (optical indices, radar indices, and
biophysical indicators) to improve accuracy.

Authors such as Chen et al. (2021) combine information from the Sentinel-1 radar with the
multispectral images from Sentinel-2 for multitemporal mapping of corn in highly complex and
heterogeneous landscapes. Bolton and Friedl (2013) found high correlations between vegetation
indices and yield when the crop was fully developed. For their part, Lewis et al. (1998) evaluated
corn production in Kenya and found that the maximum values of the NDVI index are a sensitive
indicator of corn production in the agricultural district. Their results from a simple regression model
with NDVI as an independent variable to predict corn production are encouraging (r2= 0.75, p< 0.05).

Various remote sensing techniques have been applied to estimate the yield of corn plots in advance
(Soria et al., 2004). The present study used data obtained in the field to obtain a more robust
model for predicting yield in the municipality of Acambay, state of Mexico. This is because, although
satellite images and the indices derived from them provide valuable information, measurements of
plant biomass, density, and physiological parameters measured in the field are essential to validate
the models, improving their accuracy.
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Materials and methods
Study area. The plots monitored were 40 plots of native corn cultivation in well 2 of the agricultural
irrigation system of the locality of Las Arenas, municipality of Acambay, state of Mexico. Together,
these cover a total area of 63 ha (Figure 1). The area is characterized by a temperate climate with
rainfall from June to September, with a maximum rainfall of 160 mm and an average temperature
of 15 °C. The dry season includes December, January, and February, whereas the rainy season
covers the months from June to October (Figure 2).

Figure 1. Geographical locaon of the study area.

Figure 2. Climate chart of the Huapango dam staon, Mexico in 2022, number 15187 (CONAGUA, 2022).

Sennel 2 image processing
Sentinel 2B is a multispectral optical sensor from the European Space Agency (ESA) that collects
information on the reflectance of the Earth’s crust in the visible and infrared regions. The image
used was an image obtained on October 13, 2022, the date that corresponds to the maturity of
the ears of corn and in which cloud-free information was acquired, a criterion of utmost importance
for the calculation of the indices. The scene was downloaded from the Open Access Hub (https://
scihub.copernicus.eu/dhus/#/home) server with an L2 level, which includes radiometric calibration.
The image was co-registered with vector mapping and the pixels of the image bands were
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resampled to a size of 10 m pixel-1 taking advantage of the finest spatial resolution available from
the source in the optical bands and using the nearest neighbor method and the scene cut to the
study area. These used SNAP’s thematic processing functions for optical sensors to calculate the
indices and indicators listed below (Table 1). The minimum, maximum, and average values of the
indices indicated above in the pixels located at the boundaries of the plots were obtained by means
of zonal statistics operations in the QGIS software (QGIS development team, 2024).

Table 1. Indices calculated in the Sennel 2 images.

Index Characteristics Formula

NDVI It correlates the visible red and infrared

regions and is associated with crop

vigorousness (Rouse et al., 1974).

EVI In addition to the visible red infrared region, it

incorporates the blue band to correct the effect

of the atmosphere and soil (Huete et al., 2002).

LAI This is generated from EVI by means

of correction factors (Chen, 1992).

FAPAR Radiation that plants absorb in the range

of the electromagnetic spectrum from 0.4

to 0.7 µm (Vega and Alvarado, 2019).

FAPAR= ND * scale factor + offset ND

the reflectance value of the vegetation

Where: NIR corresponds to the near-infrared region, Rvis to the visible red channel and Gvis to the visible green channel. 
Scale and offset factors are set by ESA.

Calculaon of corn producon with data obtained in the field
Field sampling was carried out following the methodology of the International Maize and Wheat
Improvement Center (CIMMYT, for its acronym in Spanish) in its corn yield estimation manual
(CIMMYT, 2019). Before harvest (from December 01 to 15, 2022), plants were cut and collected
from three samples chosen randomly by using random selection methods. The number of rows in
each plot was counted and based on a table of random numbers, the number immediately below
was chosen to indicate which was the row to collect the sample.

To estimate the distance between furrows to be measured, the average length of the furrow was
calculated and divided by 10. Once the furrow to be measured was identified, all the ears found in
an area of 5 m were harvested and these were shelled and dried to later be weighed. Dry yield was
calculated according to the following formula:

For its part, the amount of moisture was estimated by multiplying the total grain weight by the
percentage of moisture in the grain. This percentage of moisture was measured with a moisture
meter and its value was 14%.

The yield value is extrapolated for the evaluated plots
In this study, the plot is the territorial unit of analysis, that is, the pixel values of the indices obtained
from the satellite images were averaged per plot and the yield values sampled in the field are also
summed per plot. This is because the spatial resolution of the image prevents a direct relationship
between the pixel of the image and the individual (plant) in the field.
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Results and discussion
Figure 3 shows the cartography of the indices and indicators calculated in the study area.

Figure 3. Indices and biophysical indicators calculated in October 2022 in Las Arenas, Acambay, 
calculated from the Sennel 2 image.

The NDVI showed minimum values of 0.17 and maximum values of 0.89, with the values most
frequently found between 0.4 and 0.75, which, according to the scale proposed by Alarcón-Rozo
(2021), indicates that the plots in the study area have abundant vegetation cover (Figure 4).
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Figure 4. NDVI values in October 2022 in the plots of Las Arenas, Acambay, calculated in the 
processing of the Sennel-2 image.

The enhanced vegetation index, EVI, showed its average ranges between 0.1 and 0.25, obtaining
a minimum value of 0.025 and a maximum of 0.34 (Figure 5).
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Figure 5. EVI values in October 2022 in the plots of Las Arenas, Acambay, calculated in the 
processing of the Sennel-2 image.

The leaf area index, LAI, showed minimum values of 0.26 and maximum of 4.7 (Figure 6).
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Figure 6. LAI values in October 2022 in the plots of Las Arenas, Acambay, calculated in the 
processing of the Sennel-2 image.

The FAPAR indicator showed minimum values of 0.16 and maximum of 0.89 (Figure 7). This
indicator stands out for being the one with the greatest variability between plots.
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Figure 7. FAPAR values in October 2022 in the plots of Las Arenas, Acambay, calculated in the 
processing of the Sennel-2 image.

Relaonship of the indices with the yield obtained in the field
As can be seen in Figure 8, the yield in the 40 plots evaluated was highly variable, with yields ranging
from less than 1 t ha-1 to 6.2 t ha-1. The size of the plot does not necessarily determine production as
there are some small plots with high production and other large ones with low productions, which
highlighted the importance of crop management as a decisive factor in production.

Figure 8. Corn yield evaluated in plots of Las Arenas, Acambay in December 2022. Prepared with data 
obtained in the field.
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A producer from the Pozo 2 ejido applied irrigation in March. However, given the drought conditions
reported by CONAGUA, it is not considered a significant variation compared to the other plots. The
Table 2 reported indicators of the regression model relating the productivity measured in the field
and the indices calculated on the Sentinel 2 image.

Table 2. Stascal properes of corn crop yield regression models.

Statistic NDVI EVI LAI FAPAR

R2 0.797 0.556 0.591 0.603

Fstat 149 47.5 55 57.7

p-val <0.001 <0.001 <0.001 <0.001

RMSE 0.672 0.993 0.953 0.939

The index that presented the greatest correlation with the production measured in the field was
the NDVI (R2= 0.79), with an RMSE of 0.672, which indicates a better fit compared to the different
indices evaluated (Figure 9); the result is similar to that obtained by Lewis et al. (1998), who found a
correlation value of R2= 0.75, concluding that NDVI can be a sensitive indicator of corn production,
especially in areas of high spatial variability, as was the case of the study area, where, due to the
agricultural management of each plot, the NDVI value presented values ranging from 0.2 to 0.9.

Figure 9. Correlaon between measured corn crop yield and NDVI index.

This study found a direct linear relationship between NDVI and the production measured in the field
for the plots studied, with a strong correlation (R2= 0.79). This allows us to be optimistic about the
possibilities of predicting the harvest of grain corn, it is necessary to have more replications that
allow this relationship to be sustained (Figure 10).
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Figure 10. Esmated corn crop yield in Las Arenas, in October 2022 based on the regression with the 
NDVI index, derived from ESA’s Sennel-2B image.

The EVI index had a coefficient of R2= 0.55 in the fit to actual production. This is used in early or 
late stages where NDVI tends to become saturated, because its correction coefficients reduce 
the distortion of the atmosphere and soil in reflectances; however, it showed a low 
relationship with yield.

The same occurred with the biophysical indicators LAI (R2= 0.59), FAPAR (R2= 0.6). This 
is explained by the temporality of the satellite image since it corresponds to October, the season 
in which corn begins its senescence. There are studies that have reported the efficiency of the 
LAI and FAPAR indicators, they are developed in forested areas with abundant vegetation and 
dense canopy cover, such as the Monarch Butterfly Biosphere Reserve (Champo et al., 2014). 
This would explain why, in herbaceous crops such as corn, these indicators are not as efficient 
in estimating productivity.

Given the high correlation found between the values of NDVI and production measured in the field, 
a predictive model was run on the image to estimate production considering the equation:

To validate the data predicted by the model, estimated yield values were chosen in 10 randomly
chosen plots and their values were contrasted against the yield reported by the owners of the plots.
Table 3 contrasts the estimated and actual values of corn yield. It was observed that there were
plots where the model estimated the yield very accurately, such as number 2 (3.6/3.5) and 4 (3.3/3).
Nonetheless, there were others where the model overestimated production by up to 2 t such as
plot 5 (7.5/5.5).
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Table 3. Values esmated by satellite image processing and actual values measured in the field 
of corn yield.

Plot NDVI Estimated yield (t ha-1) Actual yield (t ha-1) Difference

1 0.7 5.5 4.5 1

2 0.6 3.6 3.5 0.1

3 0.59 3.4 2.5 0.9

4 0.58 3.3 3 0.3

5 0.79 7.2 5.5 1.7

6 0.73 6 5.5 0.5

7 0.76 6.6 5 1.6

8 0.44 0.7 1.5 0.8

9 0.68 5.1 3 2.1

10 0.7 5.5 4.5 1

Average 0.7 4.7 3.9 1

Overestimation= 26%

The model tends to overestimate yield when there are high NDVI values (0.7); calculated with 
average NDVI values (0.5-0.6), its performance is better. On average, the difference between yields 
is up to 1.5 t, that is, the model varies by up to 26% compared to actual production. Given the strong 
correlation between the average NDVI value and the estimated harvest, yield could be estimated 
at least two months before harvest, in agreement with Prasad et al. (2006). Replications in other 
agricultural areas and other climatic conditions are required to confirm this predictive ability of the 
NDVI index in Sentinel 2. This is because crop yields are driven by a variety of factors, including 
soil properties, weather conditions, pest and disease pressures, management practices, and crop 
genetic traits.

Conclusions
In the plots of well number 2 in the locality of Las Arenas, Acambay, state of Mexico and 
under conditions of intense drought, the NDVI calculated with spectral information from images 
from the Sentinel 2 sensor had the best predictive capacity for corn production (model fit r2= 
0.79) so it turned out to be an adequate predictor of the corn harvest under drought conditions, 
whereas higher NDVI values tend to overestimate yield by up to 1 t ha-1. This information can be 
useful for the estimation of harvest.

Bibliography
1 Asrar, G.; Fuchs, M.; Kanemasu, E. T. y Hatfield, J. L. 1984. Estimación de la radicación

fotosintéticamente absorbida y el índice de área foliar a partir de la reflectancia espectral
del trigo. Agronomy Journal. 76(2):300-306. hps://acsess.onlinelibrary.wiley.com/doi/10.2134/
agronj1984.00021962007600020029x.

2 Bolton, D. K. and Friedl, M. A. 2013. Forecasting crop yield using remotely sensed vegetation
indices and crop phenology metrics. Agricultural and Forest Meteorology. 173:74-84.
10.1016/j. agrformet.2013.01.007.

3 Chen, J. M. and Black, T. A. 1992. Defining leaf area index for non-flat leaves. Plant, Cell &
Environment. 15(4):421-429.

4 CONAGUA, 2022. Comisión Nacional del Agua. Estaciones meteorológicas automáticas
(EMAS). hps://smn.conagua.gob.mx/es/observandoelempo/estacionesmeteorologicasautomacasemas.

5 Champo-Jiménez, O.; España-Boquera, M. L.; Sánchez-Vargas, N.; Cruz-de-León, J.; Lobit,
P. y López-Pérez, L. 2014. Construcción de mapas de LAI y fAPAR de la Reserva

DOI: https://doi.org/10.29312/remexca.v16i3.3636

elocation-id: e3636 12

https://acsess.onlinelibrary.wiley.com/doi/10.2134/agronj1984.00021962007600020029x
https://acsess.onlinelibrary.wiley.com/doi/10.2134/agronj1984.00021962007600020029x
https://smn.conagua.gob.mx/es/observandoeltiempo/estacionesmeteorologicasautomaticasemas
https://doi.org/10.29312/remexca.v16i3.3636


de la Biósfera Mariposa Monarca y su comparación con mapas globales. CienciaUAT.
8(2):22-31. hps://www.redalyc.org/arculo.oa?id=441942931003.

6 Chi, X.; Yangling, D. and Dai, Z. 2022. Estimation of maize biomass components from
Sentinel-1 SAR data using multi-target regressors. IEEE International Geoscience and
Remote Sensing Symposium. 1392-1395 pp. Doi:10.1109/IGARSS46834.2022.9884054.

7 Chuvieco-Salinero, E. 2002. Teledetección ambiental. La observación de la tierra desde el
espacio. 1a. Ed. Editorial Ariel. Barcelona, España. 586 p.

8 CIMMYT. 2012. Centro Internacional de Mejoramiento de Maíz y Trigo. Manual de estimación
de rendimiento de maíz. Mexico. El Batán, Estado de México. 16-27 pp.

9 Cruz-Durán, J. P.; Sánchez-García, A.; Galvis-Spínola, P. y Carrillo-Salazar, J. A. 2011.
Índices espectrales en pimiento para el diagnóstico nutrimental de nitrógeno. Terra
Latinoamericana. 29(3):259-265.

10 Doraiswamy, P. C.; Moulin, S.; Cook, W. P. and Stern, A. 2003. Crop yield assessment from
remote sensing. Photogramm. Eng. Remote Sens. 69(6):665-674.

11 Hernández, N.; Soto, F. y Caballero, A. 2009. Modelos de simulación de cultivos:
Características y usos. Cultivos Tropicales. 30(1):73-82. hp://scielo.sld.cu/scielo.php?script=sci-
arext&pid=S025859362009000100014&lng=es&tlng=es.

12 Hu, R.; Yan, G.; Mu, X. and Luo, J. 2014. Indirect measurement of leaf area index on the basis
of path length distribution. Remote Sensing of Environment. 155:239-247. Doi: 10.1016/
j.rse.2014.08.032.

13 Huang, J.; Wang, H.; Dai, Q. y Han, D. 2014. Analysis of NDVI data for crop identification
and yield estimation. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing. 7(11):4374-4384.

14 Kolotii, A.; Kussul, N.; Shelestov, A.; Skakun, S.; Yailymov, B.; Basarab, R. y Ostapenko, V.
2015. comparación de predictores biofísicos y satélites para predicciones de rendimiento
de trigo en Ucrania. Archivos internacionales de fotogrametría, teledetección y ciencias de
la información espacial. 39-44 pp.

15 Lewis, J. E.; Rowland, J. y Nadeau, A. 1998. Estimating maize production in Kenya
using NDVI: some statistical considerations. International Journal of Remote Sensing,
19(13):2609-2617.

16 Manzo-Delgado, L. y Meave, J. A. 2003. La vegetación vista desde el espacio. La fenología
foliar a través de la percepción remota. Ciencia. 54(3):18-28. hps://www.amc.edu.mx/
revistaciencia/images/revista/54-3/vegetacion-vista-espacio.pdf.

17 Ovando, G.; de la Casa, A.; Díaz, G.; Díaz, P.; Bressanini, L. y Miranda, C. 2021. Desempeño
de diferentes índices de vegetación de Sentinel-2A para estimar el rendimiento de soja en
agricultura de precisión. Agriscientia. 38(2):1-12.

18 Prasad, A. K.; Chai, L.; Sigh, R. P. and Kafatos, M. 2006. Crop yield estimation model for
Iowa using remote sensing surface parameters. International Journal of Applied Earth
Observation and Geoinformation. 8(1):26-33.

19 QGIS 2024. Geographic Information System. Open-Source Geospatial Foundation Project.
hps://qgis.org.

20 Qin, H.; Wang, C.; Zhao, K. and Xi, X. 2018. Estimación de la fracción de radiación
fotosintéticamente activa absorbida (fPAR) en los canopies de maíz utilizando datos LiDAR
e imágenes hiperespectrales. Plos one. 13(5):e0197510. 10.1371/journal.pone.0197510.

21 Soria-Ruiz, J.; Fernández-Ordóñez, Y. y Granados-Ramirez, R. 2004. Metodología para la
predicción del rendimiento del maíz utilizando datos satelitales de teledetección en el
Centro de México. Investigaciones Geográficas. 55:61-78.

DOI: https://doi.org/10.29312/remexca.v16i3.3636

elocation-id: e3636 13

https://www.redalyc.org/articulo.oa?id=441942931003
http://scielo.sld.cu/scielo.php?script=sci-arttext&pid=S025859362009000100014&lng=es&tlng=es
http://scielo.sld.cu/scielo.php?script=sci-arttext&pid=S025859362009000100014&lng=es&tlng=es
https://www.amc.edu.mx/revistaciencia/images/revista/54-3/vegetacion-vista-espacio.pdf
https://www.amc.edu.mx/revistaciencia/images/revista/54-3/vegetacion-vista-espacio.pdf
https://qgis.org
https://doi.org/10.29312/remexca.v16i3.3636


22 Vega-Araya, M. y Alvarado-Barrantes, R. 2019. Análisis de las series de tiempo de variables
biofísicas para cuatro ecorregiones de Guanacaste, Costa Rica. Revista de Ciencias
Ambientales. 53(2):60-96. Doi: hps://doi.org/10.15359/rca.53-2.

23 Weiss, M.; Troufleau, D.; Baret, F.; Chauki, H.; Prévot, L.; Olioso, A.; Bruguier, N. y Brisson, N.
2001. Coupling canopy functioning and radiative transfer models for remote sensing data
assimilation. Agric. For. Meteorol. 108(2):113-128.

24 Xiuliang, J.; Zhenhai, L.; Haikuan, F.; Zhibin, R. y Shaokun, L. 2019. Deep neural network
algorithm for estimating maize biomass based on simulated Sentinel 2A vegetation indices
and leaf area index. KeAi Chinese Roots Global Impact. 8(1):87-97.

25 Xu, C.; Ding, Y.; Zheng, X.; Wang, Y.; Zhang, R.; Zhang, H.; Dai, Z. and Xie, Q. A. 2022.
Comprehensive comparison of machine learning and feature selection methods for maize
biomass estimation using Sentinel-1 SAR, Sentinel-2 Vegetation Indices, and Biophysical
Variables. Remote Sensing. 14:4083. 10.3390/rs14164083.

DOI: https://doi.org/10.29312/remexca.v16i3.3636

elocation-id: e3636 14

https://doi.org/10.15359/rca.53-2
https://doi.org/10.29312/remexca.v16i3.3636


Esmaon of corn yield thro ugh image treatments obtained by Sennel
2: case of Las Arenas, Acambay

Journal Information

Journal ID (publisher-id): remexca

Title: Revista mexicana de ciencias agrícolas

Abbreviated Title: Rev. Mex. Cienc. Agríc

ISSN (print): 2007-0934

Publisher: Instituto Nacional de Investigaciones
Forestales, Agrícolas y Pecuarias

Article/Issue Information

Date received: 01 January 2025

Date accepted: 01 March 2025

Publicaon date: 12 May 2025

Publicaon date: Apr-May 2025

Volume: 16

Issue: 3

Electronic Locaon Idenfier: e3636

DOI: 10.29312/remexca.v16i3.3636

Categories
Subject: Articles

Keywords:

Keywords:
biophysical indicators
corn production
vegetation indices

Counts
Figures: 10
Tables: 3
Equaons: 12
References: 25
Pages: 0

DOI: https://doi.org/10.29312/remexca.v16i3.3636

elocation-id: e3636 15

https://doi.org/10.29312/remexca.v16i3.3636



