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Abstract
Optical satellite imagery is a powerful information bank for estimating agricultural areas. This study
aimed to estimate agricultural areas in the municipalities of Salinas, Santo Domingo, and Villa
de Ramos through cloud processing of satellite images and their comparison with the traditional-
INEGI technology. The work was carried out limited to the agricultural area, which totals an area
of 190 871 ha, of which 86% are rainfed. The study period was from October 2020 to October
2021. Six classification algorithms were applied; three for traditional-INEGI: minimum distance,
maximum likelihood, and spectral angle mapper in QGIS 3.18; and three for cloud processing:
classification and regression trees, random forest, and support vector machine with Google Earth
Engine. The areas of the main crops (corn, beans, oats, alfalfa, and chili) were estimated for the
study area based on 294 field samples. For Sentinel-2 image processing, a cloud-free geomedian
was used. The results of the confusion matrices indicated which classifications were more accurate;
the values were 89% for classification and regression trees and random forest, 59% for support
vector machine, 48% for minimum distance, 43% for maximum likelihood, and 46% for spectral
angle mapper. The classification and regression trees and random forest algorithms outperformed
the other classifiers evaluated in accuracy, estimating the corn and bean agricultural areas closest
to each other (80 131 and 98 138 ha in corn and 60 174 and 60 358 ha in beans) compared to
the remaining classifiers.
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Introducon
SIAP (2020) reports that the municipalities of Salinas, Villa de Ramos and Santo Domingo cover
an agricultural area of 190 871 ha, of which 86% are rainfed. Under this condition, the main
crops planted are corn and beans. Given their importance in the region, it is necessary to have
continuous and spatially distributed agricultural information during the production cycle of these
crops. Therefore, it is convenient to use remote sensing techniques that have been more accepted
for the processing of remote sensing data due to the advances that this discipline has had (Romero,
2016; Gallardo-Cruz et al., 2019).

The combination of remote sensing with agronomy gives rise to a specific research topic, where
specialists have a field of analysis for a very varied field of application, especially in recent years with
the application of infrastructures for the processing of large volumes of data in the cloud (Aguilar,
2016). The National Institute of Statistics and Geography (INEGI, for its acronym in Spanish) applies
a methodology for the estimation of agricultural areas that requires considerable human, economic,
and computer resources.

Nevertheless, cloud computing combined with remote sensing techniques can offer better
optimization of human and computer resources. The combination of cloud processing disciplines
with others has been reported, where specialists in land use and vegetation participate (Killough,
2018; Vega et al., 2019; Venkatappa et al., 2019; Aghababaei et al., 2021).

It was known that there are few studies registered in the specialized literature that address cloud
processing and agricultural areas, such as those by German et al. (2019); Mananze et al. (2020);
Amani et al. (2020). German et al. (2019) applied support vector machine and random forest
algorithms to estimate vegetable areas in the periphery of La Plata, Argentina, and obtained an
accuracy between 96% and 98%.

The algorithms proposed here can yield good results in cloud computing despite the fact that, in
this case, the structure of the plantations of the crops of interest are totally different, since they
are mostly concentrated in rainfed areas and for this reason, crops such as beans have a low
vegetation cover, which also occurs for oat and corn crops in early stages, so the exposure of bare
soil predominates and is what is finally captured by the satellite image.

Regarding processing in computer equipment, there are studies such as that by TA et al. (2022),
who worked with ecological environments in Sinaloa, Mexico, where they applied the maximum
likelihood algorithm and managed to obtain up to 87% accuracy. Based on this background,
the present work was carried out with the aim of estimating the agricultural areas of three
municipalities of the northwest Potosino highlands through cloud processing of satellite images
and their comparison with the traditional-INEGI technology, and evaluating the results of the six
algorithms used.

Materials and methods
The municipalities studied are located in the northwest Potosino highlands on the border with the
state of Zacatecas (Figure 1). The predominant climate in the region is dry temperate and semidry
temperate according to INEGI (2008). Annual rainfall ranges between 300 and 400 mm and there is
a regime of rains in summer and winter precipitation less than 5% of the annual record (CONAGUA,
2020). The average annual temperature varies between 12 and 18 °C. The municipal area, which
includes the areas of Salinas, Villa de Ramos, and Santo Domingo, reaches 845 250 ha, of which
190 871 ha are agricultural (SIAP, 2020); most of this area is located in the municipality of Villa
de Ramos with 104 760 ha.
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Figure 1. Locaon of the study area.

The information was obtained from October 2020 to October 2021 and was used to estimate the
agricultural area in the 2020 spring-summer (SS) cycle in the three municipalities studied. This
research evaluated the different algorithms that exist in the literature to perform feature extraction
on regions of interest in a satellite image and different intelligent algorithms to carry out the
classification based on patterns in order to propose an improvement in the methodology that allows
efficient crop classification.

This work was divided into five stages: the first consisted of acquiring satellite images from the
Sentinel-2 MSI multi spectral instrument, level-2A, in the Copernicus platform. The spatial resolution
used was 10 (B2, B3, B4 and B8) and 20 (B5, B6, B7, B8A, B11 and B12) meters at the same time.
The field sampling was carried out from October 19 to 23, 2020; the second focused on applying the
algorithms for extracting the spectral signatures; the third consisted of cutting out the image of each
municipality; the fourth was aimed at the training of the different intelligent algorithms that will allow
classifying the descriptive features obtained in the first stage; and the last consisted of the validation
of the performance of the classifier by using 43 samples other than those used in training (Figure 2).
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Figure 2. Methodology flowchart.

The field information that was collected in the studied territory had as a reference the universe 
of 34 132 plots of land that include ejido property and small property, for the three municipalities 
(INEGI, 2020a). For field sampling, it was planned to characterize 380 plots of these sites, which 
were randomly selected using the random selection tool of QGIS v.2.18.

On the other hand, field data was collected in a QField v.3.3.0 project, which was divided into four 
sections: location of the sample, detail of the crop, photos, and general description. The location 
included the national geostatistical framework (NGF) and the geostatistical names and keys where 
each plot was located, which are data that cannot be edited on the mobile device.

In the detail of the crop, only the type, its phenological stage, and any damage if it existed were 
defined. In the photo section, a couple of images were captured with the camera of the mobile 
device: a panoramic photo and photo of the plants, which were linked to each plot. The field samples 
were used to define the regions of interest (ROI) and train the supervised classifications. First, we 
worked on the Google Earth Engine (GEE) platform with the support of the intake of vector files 
for the digitization of ROIs; in this, we used random forest (RF) algorithms that work with individual 
decision trees, which creates a slightly different data for each tree (Panagiotakis et al., 2021).

The second algorithm was classification and regression trees (CART), which works through decision 
trees for regression and classification of data (Strzelecka and Zawadzka, 2021) and finally, the third 
algorithm used in GEE was support vector machine (SVM), which works by correlating data in a 
large space in such a way that training regions can be categorized (Sánchez-Pozo et al., 2021; 
Kok et al., 2021).

The same image was classified on a computer with the following characteristics: Intel® Core™ i7 
processor, 32 GB RAM, 64-bit Windows operating system, where the following algorithms were 
used: minimum distance (MD), maximum likelihood (ML), and spectral angle mapper (SAM) in the 
QGIS 3.18 software and the semi-automatic classification plugin (SCP). To execute the process, 
the spectral signatures (SS) of each ROI were extracted, these were stored in a spectral library and 
then the FEs were applied to the satellite imagery for each algorithm.

To validate the results, 43 field samples that were collected on the same date and study area were 
used. These samples were used to create 43 ROIs, which were entered into the project and the 
confusion matrix algorithm of each classified image was run versus the 43 ROIs. Subsequently, 
in the monitoring of rainfall, the monthly climate products offered by TerraClimate of the land 
surface were used. TerraClimate uses climate-assisted interpolation, which combines normalized 
climatological data from the WorldClim dataset (Abatzoglou et al., 2018).
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The estimation of the geomedian used a series of images obtained mainly from the 14QKL mesh 
since it covers most of the area of interest; the following images were also employed: 14QKM, 
13QHF, 13QHG, 13QGF, and 13QGG. Geomedian is defined as a high-dimensional statistic that 
exchanges a time series of Earth observation images for a single high-quality composite pixel with 
reduced spatial noise that maintains its spatial consistency (Roberts et al., 2017).

The geomedian is particularly useful when the probability distribution of the data is not necessarily 
multivariate normal or if there are outliers in the data (Roberts et al., 2017; INEGI, 2020b). Finally, 
the Normalized Difference Vegetation Index (NDVI) was calculated at 5-day intervals during the 
SS cycle for the sampled ROIs. The information obtained was employed to analyze the average 
behavior and sustained trend of the NDVI in the rainfed and irrigated agricultural areas of the 
three municipalities under study; from the behavior of the index, the date of greatest vigor of the 
crops was identified.

Results and discussion
The behavior of NDVI identified the highest peak in vegetation development in September 2020; this 
month was taken as the optimal date to detect all crops at their highest vigor. The analysis of 
results showed that, in the study area, the precipitation pattern is characterized by a strong 
interseasonal and interannual variability, which in turn governs the start of sowing of rainfed crops 
for the spring-summer cycle.

The seasonal magnitude of precipitation in the northwest Potosino highlands is recorded on 
average as follows: summer, autumn, winter and spring with 53.2%, 20.4%, 14.3% and 
12.1% of the total annual precipitation, respectively. It was considered that the large 
variation in total annual precipitation originates in the fluctuation of the number of precipitation 
events rather than in their magnitude and is responsible for the occurrence and length of the 
intra-summer drought or heat wave, which is known to occur in these semi-arid areas (Bravo 
et al., 2006; Núñez-López et al., 2007).

On the other hand, the sampling results were not as expected according to plan; 294 
samples were obtained out of the 380 indicated in the sample size; the reason for not meeting 
the sampling objective was the time available for sampling due to the early harvests in the area. 
Of the samples collected: 102 were beans, 101 corn, 7 alfalfa, 5 oats, 6 chili, 35 other crops 
(which mainly included the combination of two or more crops in the same plot), and finally, 38 
samples without crops.

The estimated distribution of the different crops using the CART algorithm, processed in GEE, is 
shown in Figure 3. It can be noted that the dominant crops in the sown area are corn and beans; 
in these cases, the crops of the same type, both irrigated and rainfed, were grouped. Nonetheless, 
according to what was observed during the sampling, oat, alfalfa, and chili crops are spatially 
distributed in the irrigated areas.
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Figure 3 . Spaal distribuon of the crops esmated using the CART algorithm.

Two hundred ninety-four ROIs were digitized and used to train the classifications in each algorithm.
These were homogeneous polygons of the same spectral range to reduce the confusion that could
occur between the classes. Table 1 presents the results of the estimated area for each of the crops
evaluated with the six algorithms employed. In general, it was observed that the areas estimated
with the three algorithms (CART, RF, and SVM) applied in GEE were higher than those estimated
with the three algorithms (ML, MD, and SAM) in QGIS for all cases.

Table 1. Esmated areas in hectares for the different algorithms by crop.

Crop SVM CART RF ML SAM MD SIAP

Corn 110 706 80 131 98 138 55 472 75 621 78 265 41 435

Beans 52 565 60 174 60 358 77 794 46 686 48 553 89 605

Oats 2 988 1 921 1 538 1 914 1 724 3 341 6 850

Alfalfa 5 402 5 019 3 503 1 514 4 434 2 625 2 780

Chili 2 741 5 642 3 979 735 2 272 3 111 16 552

Others 1 914 23 442 14 211 12 149 15 154 12 968 1 029

Without crops 25 867 25 853 20 454 16 436 17 469 15 420 -

Total 202 182 202 182 202 182 166 015 163 359 164 282 158 251

MD= minimum distance; ML= maximum likelihood; SAM= spectral angle mapper; CART= classification and regression 
trees; RF= random forest; SVM= support vector machine.
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According to these results, the largest area estimated with all the classifiers was that for corn, then
beans and finally, irrigated crops (alfalfa, chili, and oats); in addition, others and without crops were
also included. Thus, corn and bean crops are the most common and the most important in the study
area since they add up to an estimated average area of 140 744 ha for the studied cycle. Regarding
the area reported by SIAP (2021) for the cycle studied, the estimated area differs greatly with most
of the algorithms applied for all the crops evaluated.

The discrepancies observed, especially in irrigated crops, are probably due to the spatial distribution
of the samples that were used to train the algorithms. The estimated processing times for each
algorithm are shown in Table 2. In the case of training, it included the creation, modification and
debugging of the ROIs, which served to train the other algorithms within the same platform.

Table 2. Average processing mes (in hours).

Training Classification

execution

Image download Confusion matrix

calculation

Total

GEE 5.25* 0.25 0.25 0.25 6

QGIS 6* 15 0 5 26
* = It includes the creation of the ROIs for a single occasion since they will be the same training polygons for all the 

algorithms.

The cloud processing time used in the 294 ROIs was 6 h per algorithm, whereas the time 
required for the execution of each algorithm with the same ROIs, applied in desktop software 
(QGIS 3.18), was up to 26 hours. This 20-hour difference is due to the GEE engines that 
function as servers for processing. This time saving coincides with what was reported by Perilla 
and Mas (2020) in the sense that GEE is a powerful tool that links the potential of big data 
and the efficiency of cloud processing.

Therefore, processing times were significantly faster in the cloud than on desktop, which ensures 
savings in economic, computer, and human resources. The validation of the results was determined 
by the confusion matrix of each algorithm; this matrix was obtained by comparing the predicted data 
versus the observed data, which corresponded to the 43 samples that were not used in the training. 
This identifies how many pixels were correctly classified and how many were confused with another 
crop, which was done for each of the 7 classes.

The classes obtained were defined as follows: 1 for corn, 2 for beans, 3 for oats, 4 for alfalfa, 5 
for chili, 6 for other crops that are combined, and finally, class 7 for plots without crops or at rest. 
For the calculation of error matrices that represent the probability that sampled areas in the image 
are correctly classified with the sum of those pixels that were correctly classified. This meant that 
the predicted value and the observed value correspond to the same class, so there is a number 
of pixels correctly classified.

The quotient of this value was calculated; it was divided by the total number of pixels and a 
percentage of accuracy for each classification was obtained. In the case of the SVM algorithm, there 
was a slight confusion between class 2 of the predicted values and class 1 of the observed values 
and between classes 6 and 1 (28 pixels); in this case, an accuracy of 59% was obtained (Table 3).

Table 3. Confusion matrix for the SVM algorithm.

Predicted values TotalSVM

1 2 3 4 5 6 7

1 95 68 0 0 0 28 11 202

2 15 89 0 0 0 0 3 107

Observed

values

3 0 0 0 0 0 0 0 0
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Predicted values TotalSVM

1 2 3 4 5 6 7

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 5 0 0 0 0 1 1 7

Total 115 157 0 0 0 29 15 185

TP+TN 185

TP+FP+FN+TN 316

Accuracy 59%

TP= true positive; TN= true negative; FP= false positive; FN= false negative.

In the case of the CART algorithm, low confusion was detected and it was mainly between classes
1 and 2. This algorithm yielded an accuracy of 89% in 281 pixels out of 316 (Table 4).

Table 4. Confusion matrix for the CART algorithm.

Predicted values TotalCART

1 2 3 4 5 6 7

1 102 7 0 0 0 4 2 115

2 8 148 0 0 0 4 3 163

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 1

6 3 2 0 0 0 21 0 26

Observed

values

7 1 0 0 0 0 0 10 11

Total 115 157 0 0 0 29 15 281

TP+TN 281

TP+FP+FN+TN 316

Accuracy 89%

TP= true positive; TN= true negative; FP= false positive; FN= false negative.

For the RF algorithm, the confusion of class 1 was minimal with class 2, 6, and 7; an accuracy of
89% was obtained with this algorithm (Table 5).

Table 5. Confusion matrix for the RF algorithm.

Predicted values TotalRF

1 2 3 4 5 6 7

1 104 10 0 0 0 6 3 123

2 7 147 0 0 0 2 0 156

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 1

6 2 0 0 0 0 21 2 25

Observed

values

7 1 0 0 0 0 0 10 11

Total 115 157 0 0 0 29 15 282

TP+TN 282

TP+FP+FN+TN 316

TP= true positive; TN= true negative; FP= false positive; FN= false negative.

Accuracy
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The minimum distance algorithm yielded an accuracy of 48%, whereas an accuracy of 43% was 
obtained for the ML algorithm, and an accuracy of 46% for the SAM algorithm. These three 
algorithms presented the lowest accuracy values.

According to the matrices and accuracy values, when comparing the algorithms executed in GEE 
versus in QGIS, it was found that the highest percentages were obtained with the algorithms 
executed in GEE, which reached 89% accuracy, except for SVM, which had 59%; in contrast, those 
estimated with the QGIS algorithms were lower and ranged between 40 and 50%. This corroborates 
that the best estimated results were from the GEE platform, at least, that could be calculated with 
the 43 samples that were used to validate the classifications.

There is no previous study of the region that estimates agricultural areas; however, the official 
source of information (SIAP, 2021) provides monthly data on the progress of plantings by crop, 
which is comparable to the results obtained in this work (Table 1). When collating the information, 
it was observed that the areas are skyrocketing; for example in chili, where SIAP (2021) reported 
up to four times more than estimated in this work. Knowing that this methodology is based on 
a mathematical model, it is known that the estimated final result will have a percentage of error 
compared to the actual data.

On the other hand, during the methodological process, an error was detected in the execution of the 
field sampling, which was not covered in its entirety according to its planning; the transcendental 
reason was that the sampling was carried out in a short period of time and it is not that the sampling 
could not be prolonged for more days, but when the plots were visited, some of them were already 
harvested with remains of the crop or the producers were harvesting their crops and, in the best 
of cases, the crop was still standing.

In addition to this, the distribution of the samples was arranged so that a distance up to 40 km to 
reach the sampling area was considered because the field personnel stayed overnight in the locality 
of Salinas de Hidalgo. For example, those plots sampled in the locality of La Herradura, Santo 
Domingo, at a distance of 45 km from Salinas. An important aspect for the safety of the personnel 
is to guarantee their integrity in the zone and this disturbed the work schedules, which is why the 
personnel returned from the plots with time, calculating not to arrive at night to the place of stay.

Conclusions
The algorithms that yielded the highest accuracy were CART and RF, which are based on 
processing on the GEE platform, which allow for hardware, software, and time savings. This is 
reflected in the pre-processing, training, and execution stages of supervised classification.

Nevertheless, there is no way to replace the field sampling stage and everything that 
its development implies since it is an essential requirement as an input for classification. The 
GEE platform has come to revolutionize the way of working with remote sensing data since it 
strengthens the help of users in saving human, computer, and economic resources by being an 
open access platform.

As improvements to the methodology used in this work, we identified two that are related by the 
time variable; the first improvement could be to plan field sampling more in advance to meet 100%
in form and time. The other improvement is the monitoring of the climatic conditions of the place 
in the agricultural cycle of study to fully identify the beginning of the sowing and the subsequent 
conclusion of the cycle; this will help to identify the best time to carry out the field sampling.
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