Revista Mexicana Ciencias Agrícolas volume 14 number 3 April 01 - May 15, 2023
DOI: https://doi.org/10.29312/remexca.v14i3.3108
Article
Soil macrofauna and soil quality in agricultural and livestock
agroecosystems of Campeche
Eric Yanuario Castillo-Trejo1
Carolina Flota-Bañuelos2§
Julia Alcudia-Pérez2
Silvia Fraire-Cordero2
Verónica Rosales-Martínez2
Víctor Hugo Quej-Chí2
1Higher Technological Institute of Hopelchén. Federal Highway Campeche-Hopelchén km 83, Hopelchén, Campeche, Mexico. CP. 24600. (erick-ct24@hotmail.com).
2CONACYT-Postgraduate College-Campus Campeche. Haltunchén-Edzná highway km 17.5, Sihochac, Champoton, Campeche, Mexico. (frairec@colpos.mx; vrosales@colpos.mx).
§Corresponding author: cflota@colpos.mx.
Abstract
Crops in the state of Campeche are intensifying, this causes transformations in the physicochemical and biological properties of the soil. The objective was to determine the effect of agroecosystems on soil macrofauna and soil properties. Ten sampling points per agroecosystem were taken, with three repetitions each. The sites were chosen according to the agricultural use (grassland, forest, intensive and traditional agricultural) and time of use (≥8 years). One kilogram from each sample was taken at a depth of 20 cm, then placed in polyethylene bags. The pH, electrical conductivity, organic matter, available phosphorus, total nitrogen and soil macrofauna were determined. With the data of each variable, an analysis of variance was performed and to determine the differences between land uses and sites, a mean test was carried out according to the Tukey statistic (p≤ 0.05), using the software Statistica version 7.1. The grassland agroecosystem of Palizada presented the best characteristics in the soils, with pH of 7.29, P, OM, N of 1.31 mg kg-1, 5.05% and 0.31%, respectively and soil fauna with 66 individuals. The agroecosystem with the lowest soil quality was intensive crops of Hopelchén, with moderately acidic pHs (6.44), higher amount of P (33.42 mg kg-1), lower OM (2.59%) and high N contents (0.23%) and without soil macrofauna. Soil management in agricultural agroecosystems does not favor the presence of soil macrofauna nor does it maintain the nutrients necessary for the proper functioning and quality of the soil.
Keywords: macroinvertebrates, production systems, soil quality.
Reception date: January 2023
Acceptance date: March 2023
Introduction
Agroecosystems (AES) are anthropogenically modified ecological systems that use natural resources for agricultural production (Martínez-Castro et al., 2015), of which soil is the main component, because it offers the possibility of maintaining biological productivity and environmental quality, since it promotes health in crops, animals and humans (FAO, 2015). However, the productivity and functioning of AESs are affected by continuous changes in land use, inadequate land management, indiscriminate use of agricultural inputs and heavy agricultural machinery, which cause loss of soil quality (Cuadras-Berrelleza et al., 2021; Li et al., 2022), increased salinity (Mukhopadhyay et al., 2021), decreased soil fauna due to the intake of microplastics in agricultural systems (Zhang et al., 2022) and soil compaction that directly impacts crop yield due to increased nutrient leaching (Parvin et al., 2022).
In Campeche, Mexico, of the 5.79 million hectares of land it owns, 54.7% is secondary vegetation (forest), 15.9% rainforest (distributed between high, medium, low and fragmented rainforest), the latter affected by agricultural activities (SEMARNATCAM, 2009), through slash and burn, which have become land for traditional and intensive crops (Porter-Bolland et al., 2007; Bautista-Cruz et al., 2012) and for grasslands in livestock activities. Among the municipalities with the highest deforestation rates are Calakmul, going from 0.3% to 0.7% by 2005, and Hopelchén with 45 706 ha lost until 2015 (Ellis et al., 2017), this indicates that forest conversion is intensifying.
In addition to the above, it has been reported that most of the area of the state of Campeche has very stony soils with limited depth and of calcareous origin (Leptosols), not suitable for intensive agricultural use (Palma-López et al., 2017). Despite this situation, there are municipalities such as: Hopelchén, Escárcega, Candelaria and Palizada that allocate areas for agricultural crops of 91 109, 26 857.9, 23 360.5 and 10 848.3 ha, respectively, and in livestock farming 1 537 435 ha for grasslands in the state of Campeche (SIAP, 2017), where there were decreases in harvests in recent years.
Agricultural and livestock activities in inappropriate soils cause transformations in physical, chemical and biological properties (Torres-Torres and Rojas-Martínez, 2019), which have an impact on soil quality, mainly on its nutrients and functioning (Meza et al., 2017; Villanueva-López et al., 2019), such as degradation, compaction and erosion of grasslands due to overgrazing (FAO, 2015), interference in the composition and structure of the rhizosphere bacterial community (Qi et al., 2020), soil and aquifer contamination (Lorenzo-Flores et al., 2017), and modification of the habitat of microorganisms and macroinvertebrates (Giller et al., 1997). The latter caused by the indiscriminate use of organophosphate pesticides such as glyphosate (Rendón-von Osten and Dzul-Caamal, 2017), diazinon, dimethoate, methyl parathion, sulfotep and the use of degradable and biodegradable mulching (Qi et al., 2020).
To evaluate changes in soil properties affected by anthropic activities and therefore propose conservation strategies according to land use and physicochemical characteristics, physical, chemical, biological variables and their relationships, participation in production and stability of agroecosystems are analyzed (García et al., 2012). Among the indicators are land use, nitrogen mineralization, microbial biomass carbon, microbial C/N ratio, earthworm abundance (Krüger et al., 2018), soil fauna (Sofo et al., 2020), pH, electrical conductivity, total and organic carbon in particles, total nitrogen, hydraulic conductivity, texture and organic matter (Baridón and Casas, 2014). Therefore, the objective was to determine the soil macrofauna and soil quality in agricultural and livestock agroecosystems of Campeche.
Materials and methods
Study site
The work was carried out during the months from July to November 2020 in the municipalities of Candelaria, Palizada, Escárcega and Hopelchén of the state of Campeche. Candelaria is located at 17°49’ 00” and 18° 30’ 39” north latitude and 90° 14’ 00” and 91° 19’ 42” west longitude. It comprises a territorial extension of 5 574.8 km2, at 46 masl, warm humid climate and warm subhumid tropical rainy climate, the average annual temperature of 26 ° C, the average annual rainfall is 1 700 mm (INEGI, 2009). Palizada is located at 17° 56’ and 18° 36’ north latitude and 91° 39’ and 92° 14’ west longitude, with an extension of 2 071.7 km2, at 2 masl, with a humid climate with an average annual temperature of 27 °C and average annual rainfall of 1 750 mm (INEGI, 2009).
Escárcega is located at 18° 10’ and 19° 01” north latitude and 90° 03’ and 91° 02’ west longitude, at 60 masl, with warm subhumid climate, average annual temperature of 27 °C and average annual rainfall of 1 065 mm (INEGI, 2009). Hopelchén is located at 17° 48’ and 20° 11’ north latitude and 89° 06’ and 90° 09’ west longitude, the area of the municipality is 7 956.7 km2, warm climate, at 89 masl, with average annual temperature of 26 °C and average annual rainfall of 105 mm (INEGI, 2009).
Soil selection and sampling
Three types of agroecosystems representative of the state of Campeche were differentiated, according to agricultural uses and time of use (≥8 years). Extensive livestock use (grassland), intensive agricultural use (corn and sorghum), traditional agricultural use (roselle and corn) and secondary vegetation as control (forest) (Figure 1) were systematically selected.
Figure 1. A) grassland; B) intensive crop; C) traditional crop; and D) forest.
In each AES, three sampling points (repetitions) were established with a separation of 500 m. A quadrant of 25 x 25 cm was placed to carry out soil sampling at a depth of 20 cm. Each of these contained an approximate weight of 1 kg. Then, they were placed in plastic bags and labeled with the name AES and repetition. Subsequently, they were transported to the water and soil laboratory of the Campeche Campus of the College of Postgraduates (Table 1).
Table 1. Number of total samples by agroecosystem in the municipalities of Candelaria, Palizada, Escárcega and Hopelchén.
Agroecosystem | No. of sites | Repetitions | Total samples |
Grassland | 10 | 3 | 30 |
Intensive agricultural | 10 | 3 | 30 |
Traditional agricultural | 10 | 3 | 30 |
Forest | 10 | 3 | 30 |
Processing and analysis of soil samples
The soil samples were dried at room temperature, ground with a wooden hammer and sifted with a stainless-steel mesh with an opening of 2 mm in diameter. The texture determination (% silt, % clay and % sand) was performed using the Bouyoucos methodology. To measure the pH, the readings were taken with an Oaklon multiparameter PCSTestr35 previously calibrated with a buffer of pH 10, 7, 4.
Electrical conductivity (EC) was measured with a previously calibrated Oaklon multiparameter PCSTestr35. To obtain organic matter (OM), the methodology of Walkley and Black was followed. Available phosphorus (P) was quantified using the method proposed by Olsen (1980) and total nitrogen (N) was evaluated using the micro Kjeldahl methodology. The physicochemical determinations were carried out with the specifications of the Official Mexican Standard NOM-021-RECNAT-2000.
Counting and identification of soil macrofauna
To collect the soil macrofauna, the monolith method, proposed by the Institute of Biology and Fertility of Tropical Soils (TSBF), was used. The collected macrofauna was deposited in bottles with 70% alcohol for conservation and subsequent identification (Decaëns et al., 1994) at the order level.
Statistical analysis
To evaluate the effect of agroecosystems (grassland, traditional crop, intensive crop and forest) on the dependent variables (pH, EC, P, OM, N, texture and abundance of soil fauna), a completely randomized analysis of variance with a linear model was used, and to determine the differences between land uses and sites, a Tukey mean test (p≤ 0.05) was performed with the software Statistica version 7.1.
Results and discussion
Physicochemical analysis of the soil
When comparing the physicochemical parameters of the soil by agroecosystem, it was observed that the EC was higher in the traditional crop with 0.25 dS m-1 (p≤ 0.05 ) and lower in the intensive crop with 0.1 dS m-1, both remained in non-saline (NOM-021-RECNAT-2000). In this sense, FAO (2017) mentions that as electrical conductivity decreases (≤1), plants become stressed, affecting biomass production; this phenomenon has been observed in crops of Origanum vulgare ssp. hirtum, where treatment with 25% nutrient solution and EC less than 1 dS m-1 obtained the lowest production of total fresh and dry matter (Juárez-Rosete et al., 2019).
The pH of the soils of the forest, traditional crop and grassland are moderately alkaline (p≤ 0.05), while the soils of the intensive crop are moderately acidic (NOM-021-RECNAT-2000) Table 2. In agricultural soils of Jalisco, 61.1 and 38.9% of the sampled agricultural area had strongly acidic and moderately acidic pH, respectively, because the agricultural activity is intensive and the chemical inputs they apply cause acidity (Ibarra-Castillo et al., 2009). The phosphorus content showed statistical differences (p≤ 0.05), according to the classification of Olsen (1980), the soil of the grassland and forest are low with <12, while traditional and intensive crops presented medium and optimal values with ranges within 12-24 and 24-36, respectively (NOM-021-RECNAT-2000).
Nitrogen was found in very low amounts for forest and grassland with less than 0.02%, for the traditional crop it was medium with 0.13% and high for the intensive crop with 0.23% (NOM-021-RECNAT-2000) (Table 2), this is due to the application of synthetic NPK-based fertilizers to crops (Medina et al., 2018). However, the excessive use of these fertilizers (Montejo-Martínez et al., 2018), from agricultural and livestock agroecosystems causes contamination to the aquifer, reaching rivers, such as the Usumacinta (Ferat et al., 2020).
With regard to organic matter, the highest contents were found in the traditional crop, followed by forest and grassland with 9.66, 7 and 6.19% respectively, and the lowest was observed for intensive crops with 2.59% (NOM-021-RECNAT-2000) (Table 2), which clearly indicates that they are systems that tend to stabilize the OM content in the soil by providing litter residues (Palma-López et al., 2015). Traditional management and systems with different strata or inclusion of legumes increase the amount of OM and fertility (Arteaga et al., 2016).
Table 2. Physicochemical composition of the soil of agroecosystems of Campeche.
Variables | Grassland | Agroecosystem Intensive crop | Traditional crop | Forest |
PH | 7.63 a | 6.44 b | 7.71 a | 7.42 ab |
EC (dS m-1) | 0.21 ab | 0.1 b | 0.25 a | 0.21 ab |
P (mg kg-1) | 2.49 b | 33.42 a | 19.39 ab | 3.1 b |
OM (%) | 6.19 b | 2.59 c | 9.66 a | 7 ab |
N (%) | 0.01 a | 0.23 a | 0.13 a | 0.02 a |
Clay (%) | 58.92 a | 63.32 a | 54.32 a | 61.04 a |
Silt (%) | 23 a | 16 a | 15.36 a | 13.53 a |
Sand (%) | 18.08 a | 20.68 a | 30.32 a | 25.42 a |
a, b, c= different literals in the same column indicate significant differences p≤ 0.05.
Unlike intensive crops, which, like the conventional management of the monoculture Solanum tuberosum L. and the meadow of Pennisetum clandestinum have lower percentages of OM, total N and exchangeable bases (Arteaga et al., 2016), due to the removal of native vegetation and the use of plough for crop establishment, the infiltration capacity, amount of organic matter and nutrients from the soil decrease (Sosa-Quintero and Godínez-Álvarez, 2019). Therefore, they are usually deficient in more than one micronutrient, resulting in low concentration in plant tissues, which does not allow them optimal growth (Noval-Artiles et al., 2014).
The physicochemical variables by municipality show that Hopelchén is the only area that is found with moderately acidic soils with pH= 6.48, with lower EC (0.16 dS m-1), available phosphorus in the medium range with 20.55 mg kg-1, lower percentage of organic matter (0.06%) and higher total nitrogen content (1.51%) (Table 3). It should be noted that samples of intensive crops, where mechanized agriculture is practiced (Ellis et al., 2017), use genetically improved seeds and chemicals for the production of corn, soybeans and sorghum, in order to obtain productive efficiency (Vargas and García, 2018).
Table 3. Physicochemical composition of the soil of four municipalities of Campeche.
Characteristics | Candelaria | Palizada | Escárcega | Hopelchén |
PH | 7.68 a | 7.29 ab | 7.33 ab | 6.48 b |
EC (dS m-1) | 0.19 a | 0.25 a | 0.23 a | 0.16 a |
P (mg kg-1) | 1.93 b | 1.31 b | 4.95 ab | 20.55 a |
OM (%) | 7.12 a | 5.05 b | 8.23 a | 4.06 c |
N (%) | 0.46 b | 0.31 b | 0.54 b | 1.51 a |
Clay (%) | 57.44 b | 61.57 ab | 72.42 a | 57.43 b |
Silt (%) | 20.09 ab | 28.9 a | 10.42 b | 15.63 b |
Sand (%) | 26.93 a | 9.52 b | 17.14 ab | 22.47 ab |
a, b, c= different literals in the same column indicate significant differences p≤ 0.05.
Soil macroinvertebrates
A total of 123 individuals belonging to the following five orders were recorded; Haplotaxida, Scolopendromorpha, Coleoptera, Dermaptera and Hymenoptera. The order Haplotaxida (earthworm) was the most abundant (p≤ 0.05), followed by orders; Scolopendromorpha, Coleoptera, Dermaptera and Hymenoptera, with 54, 36, 24, 6 and 3 individuals, respectively (Figure 2A). The soil macrofauna presents alterations in their composition and biodiversity, this depends on the disturbance of the soil caused by its modification, considering these species as bioindicators of the environmental alteration (Cabrera, 2012). Likewise, Mesa-Pérez et al. (2016) mention that the sampling of Diplopoda, Coleoptera, Hymenoptera and earthworm is sufficient to determine the state of soil health.
The richness found in the soils was higher in the grasslands that registered five orders (p≤ 0.05), followed by forest with three orders (Haplotaxida, Scolopendromorpha and Dermaptera), traditional crop with one order (Coleoptera) and absence of these organisms in intensive crops (Figure 2B). The presence of earthworm (Haplotaxida) as an index of soil conservation indicates that the least disturbed are the forest and grassland soils. The orders of arthropods are similar to those found by Rosa and Negrete-Yankelevich (2012), where the presence of Hymenoptera and Coleoptera was 38 and 16.4% in reedbeds and in secondary vegetation it was 22.7 and 23.5%, respectively.
Figure 2. A) number of individuals; and B) orders of soil macrofauna in four agroecosystems of Campeche.
Like Chi et al. (2020) who registered 38% of Hymenoptera in sugarcane fields, 16.4% of Coleoptera, 11.7% of Blattodea, 9.7% of Chilopoda and 8.8% of Araneae and in the secondary forest, Coleoptera showed a greater abundance with 23.5%, Hymenoptera obtained 22.7%, Isoptera 12.1%, Gastropoda 9.1% and Aranea 6.8%.
The municipality of Palizada had the highest number of worms, with 39 individuals (p≤ 0.05), followed by Candelaria, Escárcega and Hopelchén with 12, 3 and 0 individuals, respectively, Figure 3A. This indicates that the extensive grasslands of these sites are less disturbed, explaining the relevance of the grassland agroecosystem of the municipality of Palizada, since it promotes adequate habitat, such as vegetation cover that provides aerial and root biomass of plants. The greatest richness was recorded in the municipality of Palizada with four orders (haplotoxida, scolopendromorpha, coleoptera and dermaptera), followed by Candelaria with three orders (scolopendromorpha, haplotoxida and hymenoptera), Escárcega with two orders (haplotoxida and dermaptera) and Hopelchén with the presence of an order (coleoptera) belonging to the traditional crop (Figure 3B).
Figure 3. A) abundance; and B) richness of soil macrofauna by municipality of the state of Campeche.
In the intensive crops of Hopelchén, which presented less forest cover and high-intensity practices, no soil fauna was recorded. This is due to the fact that some taxonomic groups are more sensitive to changes, when there is conversion of an area of natural vegetation for agricultural activities (Rosa and Negrete-Yankelevich, 2012). This decrease in soil fauna for agricultural systems with intensive management has been observed in soybean crops of Hopelchén, Campeche, on the decrease of bees (Vides-Borrell et al., 2019), in sugarcane in Veracruz, with lower abundance of springtails and ants compared to systems with traditional management (Cabrera-Mireles et al., 2019) and in monocultures of Persian lime (Citrus latifolia), negative impact was found on the soil fauna, compared to polycultures of Persian lime, banana (Musa spp.) and cacao (Theobroma cacao) (Murillo-Cuevas et al., 2020).
Conclusions
The extensive grassland agroecosystem of the municipality of Palizada presents the best characteristics in the soils, with pH of 7.29, levels of phosphorus, organic matter and nitrogen of 1.31 mg kg-1, 5.05% and 0.31%, respectively, which affect the quality of the soil and favor the presence of soil macrofauna, specifically of the orders Haplotaxida (earthworm), Scolopendromorpha (millipede), Coleoptera (white grub) and Dermaptera (earwigs). The agroecosystem that presented the soils with the lowest quality was that of intensive crops of the municipality of Hopelchén, with moderately acidic soils (6.44), greater amount of phosphorus 33.42 mg kg-1, lower amount of organic matter (2.59%) and high nitrogen contents (0.23%), which affect the populations of beneficial soil macrofauna, since no individual was collected.
Therefore, in the systems of intensive agricultural crops, it is recommended to decrease the use of pesticides, harrowing with machinery and burning of vegetable residues. As well as incorporating harvest residues and planting some nitrogen-fixing plant species, to favor the presence of soil macrofauna and reconvert soils.
Acknowledgements
To the Higher Technological Institute of Hopelchén and the College of Postgraduates, Campeche Campus, for the facilitations granted for carrying out the field and laboratory work. To the project CONACYT Chairs 2181 ‘Agroecological strategies for food security in rural areas of Campeche’.
Cited literature
Arteaga, J. C.; Navia, J. F. and Castillo, J. A. 2016. Comportamiento de variables químicas de un suelo sometido a distintos usos, departamentos de Nariño. Colombia. Rev. Cienc. Agric. 33(2):62-75. https://doi.org/10.22267/rcia.163302.53.
Baridón, J. E. and Casas, R. R. 2014. Quality indicators in subtropical soils of Formosa, Argentina: Changes for agriculturization process. Int. Soil Water Conserv. Res. 2(4):13-24. https://doi.org/10.1016/S2095-6339(15)30054-X.
Bautista-Cruz, A.; Castillo, R. F.; Etchevers, B. J.; Gutiérrez, C. M. and Baez, A. 2012. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manag. 277(1):74-80. https://doi.org/10.1016/j.foreco.2012.04.013.
Cabrera, G. 2012. La macrofauna edáfica como indicador biológico del estado de conservación/perturbación del suelo. Resultados obtenidos en Cuba. Pastos y Forrajes. 35(4):346-363. http://scielo.sld.cu/scielo.php?script=sci-arttext&pid=S0864-0394201200 0400001& lng=es&tlng=es.
Cabrera-Mireles, H.; Murillo-Cuevas, F. D.; Villanueva-Jiménez, J. and Adame-García, J. 2019. Oribátidos, colémbolos y hormigas como indicadores de perturbación del suelo en sistemas de producción agrícola. Eco. Rec. Agropec. 6(17):231-241. https://doi.org/10.19136/era. a6n17.2011.
Chi, L.; Huerta, L. E.; Álvarez, S. D.; Kú-Quej, V. and Mendoza, V. V. 2020. Abundance and diversity of soil macroinvertebrates in sugarcane (Saccharum spp.) plantations under organic and chemical fertilization in Belize. Acta Zool. Mex. 36(1):1-19. https://doi.org/10.21829/azm.2020.3611106.
Cuadras-Berrelleza, A. A.; Peinado-Guevara, V. M.; Peinado-Guevara, H. J.; López, J. D. J. and Herrera-Barrientos, J. 2021. Agricultura intensiva y calidad de suelos: retos para el desarrollo sustentable en Sinaloa. Rev. Mex. Cienc. Agríc. 12(8):1401-1414. https://doi.org/10.29312/remexca.v12i8.2704.
Decaëns, T.; Lavelle, P. M.; Jiménez, J. J.; Escobar, G. and Rippstein, G. 1994. Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. Eur. J. Soil Biol. 30(4):157-168.
Ellis, E. A.; Romero, M. J. A.; Hernández, G. I. U.; Porter, B. L. and Ellis, P. W. 2017. Private property and Mennonites are major drivers of forest cover loss in central Yucatan Peninsula, Mexico. Land Use Policy. 69(12):474-484. https://doi.org/10.1016/j. landusepol.2017.09.048.
FAO. 2015. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Estado mundial del recurso suelo (EMRS)-resumen técnico. Grupo Técnico Intergubernamental del Suelo, Roma, Italia.
FAO. 2017. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Carbono Orgánico del Suelo: el potencial oculto. Roma, Italia.
Ferat, M. A.; Galaviz, V. I. and Partida, S. S. 2020. Evaluación de nitrógeno y fósforo total en escorrentías agropecuarias en la cuenca baja del río Usumacinta, Tabasco, México. Ecosistemas. 29(1):1-5. https://doi.org/10.7818/ECOS.1879.
García, Y.; Ramírez, W. and Sánchez, S. 2012. Indicadores de la calidad de los suelos: una nueva manera de evaluar este recurso. Pastos y Forrajes. 35(2):125-138.
Giller, K. E.; Beare, M. H.; Lavelle, P.; Izac, A. M. and Swift, M. J. 1997. Agricultural intensification, soil biodiversity and agroecosystem function. Appl. Soil Ecol. 6(1):3-16. https://doi.org/10.1016/S0929-1393(96)00149-7.
Ibarra-Castillo, D.; Ruiz-Corral, J.; González-Eguiarte, D.; Flores-Garnica, J. and Díaz, P. G. 2009. Distribución espacial del pH de los suelos agrícolas de Zapopan, Jalisco, México. Agric. Téc. Méx. 35(3):267-276. http://www.scielo.org.mx/scielo.php?script=sci-arttext&pid= S0568-25172009000300003&lng=es&tlng=es.
INEGI. 2009. Instituto Nacional de Estadística y Geografía. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. http://www3.inegi.org.mx/contenidos/ app/mexicocifras/datos-geograficos/04/04007.pdf.
Juárez-Rosete, C. R.; Aguilar-Castillo, J. A.; Aburto-González, C. A. and Alejo-Santiago, G. 2019. Biomass production, nutritional requirement of nitrogen, phosphorus and potassium, and concentration of the nutrient solution in oregano. Rev. Chapingo Ser. Hortic. 25(1):17-28. https://doi.org/10.5154/r.rchsh.2018.02.006.
Krüger, I.; Chartin, C.; Wesemael, B. and Carnol, M. 2018. Defining a reference system for biological indicators of agricultural soil quality in Wallonia, Belgium. Ecol. Indic. 95(1):568-578, https://doi.org/10.1016/j.ecolind.2018.08.010.
Li, K.; Wang, C.; Zhang, H.; Zhang, J.; Jiang, R.; Feng, G.; Lui, X.; Zuo, Y.; Yuan, H.; Zhang, C.; Gai, J.; Tian, J.; Li, H. and Yu, B. 2022. Evaluating the effects of agricultural inputs on the soil quality of smallholdings using improved indices. Catena. 209(1):1-12. https://doi.org/ 10.1016/j.catena.2021.105838.
Lorenzo-Flores, A.; Lorenzo-Flores, V.; Giácoman, C.; Ponce, C. and Ghoveisi, H. 2017. Adsorption of organophosphorus pesticides in tropical soils: the case of karst landscape of northwestern Yucatan. Chemosphere. 166(1):292-299. doi:10.1016/j.chemosphere. 2016.09.109.
Martínez-Castro, C.; Ríos-Castillo, M.; Castillo-Leal, M.; Jiménez-Castañeda, J. and Cotera-Rivera, J. 2015. Sustentabilidad de agroecosistemas en regiones tropicales de México. Trop. Subtrop. Agroecosys. 18(1):113-120.
Medina, M. J.; Alejo, S. G.; Soto, R. J. M. and Hernández, P. M. 2018. Rendimiento de maíz grano con y sin fertilización en el estado de Campeche. Rev. Mex. Cienc. Agríc. 9(21):4306-4316. http://dx.doi.org/10.29312/remexca.v0i21.1532.
Mesa-Pérez, M.; Echemendía-Pérez, M.; Valdés-Carmenate, R.; Sánchez-Elías, S. and Guridi-Izquierdo, F. 2016. La macrofauna edáfica, indicadora de contaminación por metales pesados en suelos ganaderos de Mayabeque. Cuba. Pastos y Forrajes. 39(3):116-124. http://scielo.sld.cu/scielo.php?script=sci-arttext&pid=S0864-03942016000300006&lng= es&tlng=es.
Meza, A. M.; Castro, C. C.; Pereira, A. K. and Puga, M. G. 2017. Indicadores para el monitoreo de la calidad del suelo en áreas periurbanas. Valle de Quillota, cuenca del Aconcagua, Chile. Interciencia. 42(8):494-502.
Montejo-Martínez, D.; Casanova-Lugo, F.; García-Gómez, M.; Oros-Ortega, I.; Díaz-Echeverría, V. and Morales-Maldonado, E. 2018. Respuesta foliar y radical del maíz a la fertilización biológica-química en un suelo Luvisol. Agron. Mesoam. 29(2):325-341. https://dx.doi.org/ 10.15517/ma.v29i2.29511.
Mukhopadhyay, R.; Sarkar, B.; Jat, H. S.; Sharma, P. C. and Bolan, N. S. 2021. Soil salinity under climate change: challenges for sustainable agriculture and food security. J. Environ. Manage. 280(1):1-14. https://doi.org/10.1016/j.jenvman.2020.111736.
Murillo-Cuevas, F. D.; Adame-García, J.; Cabrera-Mireles, H.; Villegas-Narváez, J. y Rivera-Meza, A. E. 2020. Fauna edáfica e insectos asociados a las arvenses en limón persa, monocultivo y policultivo. Eco. Rec. Agropec. 7(2):1-11. https://doi.org/10.19136/ era.a7n2.2508.
NOM-021-RECNAT-2000. Diario oficial de la federación. Establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudio, muestreo y análisis.
Noval-Artiles, E.; García, D. R.; García, L. R.; Quiñones, R. R. y Mollineda, T. A. 2014. Caracterización de algunos componentes químicos en suelos de diferentes agroecosistemas ganaderos. Centro Agrícola. 41(1):25-31.
Olsen, S. R. and Khasawneh, F. E. 1980. Use and limitations of physical‐chemical criteria for assessing the status of phosphorus in soils. The role of phosphorus in agricultura. 361-410 pp. https://doi.org/10.2134/1980.roleofphosphorus.c15.
Palma-López, D.; Salgado-García, S.; Martínez, S. G.; Zavala-Cruz, G. y Lagunes-Espinoza, L. 2015. Cambios en las propiedades del suelo en plantaciones de eucalipto de Tabasco, México. Eco. Rec. Agropec. 2(5):163-172. http://www.scielo.org.mx/scielo.php? script=sci-arttext&pid=S200790282015000200004&lng=es&tlng=es.
Palma-López, D.; Zavala-Cruz, J.; Bautista-Zúñiga, F.; Morales-Garduza, M.; López-Castañeda, A.; Shirma-Torres, A.; Sánchez-Hernández, E.; Peña-Peña, A. y Tinal-Ortiz, S. 2017. Clasificación y cartografía de suelos del estado de Campeche, México. Agroproductividad. 10(12):71-78.
Parvin, N.; Coucheney, E.; Gren, M.; Andersson, H.; Elofsson, K.; Jarvis, N. and Keller, T. 2022. On the relationships between the size of agricultural machinery, soil quality and net revenues for farmers and society. Soil Sec. 100044. https://doi.org/10.1016/j.soisec. 2022.100044.
Porter-Bolland, L.; Ellis, E. A. and Gholz, H. L. 2007. Land use dynamics and landscape history in La Montaña, Campeche, Mexico. Landsc. Urban Plan. 82(4):198-207. https://doi.org/10. 1016/j.landurbplan.2007.02.008.
Qi, Y.; Ossowicki, A.; Yang, X.; Huerta-Lwanga, E.; Dini-Andreote, F.; Geissen, V. and Garbeva, P. 2020. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 387(1):1-7. Doi:10.1016/j.jhazmat.2019.121711.
Rosa, I. N. y Negrete, Y. S. 2012. Distribución espacial de la macrofauna edáfica en bosque mesófilo, bosque secundario y pastizal en la reserva La Cortadura, Coatepec, Veracruz, México. Rev. Mex. Biodiv. 83(1):201-215.
SEMARNATCAM. 2009. Secretaría de Medio Ambiente y Recursos Naturales del Estado de Campeche. Estrategia para la reducción de emisiones por deforestación y degradación forestal del estado de campeche.
SIAP. 2017. Servicio de Información Agroalimentaria y Pesquera. http://infosiap.siap.gob.mx/ gobmx/datosAbiertos.php.
Sofo, A.; Mininni, A. N. and Ricciuti, P. 2020. Comparing the effects of soil fauna on litter decomposition and organic matter turnover in sustainably and conventionally managed olive orchards. Geoderma. 372(1):1-8. https://doi.org/10.1016/j.geoderma. 2020.114393.
Sosa‐Quintero, J. and Godínez‐Álvarez, H. 2019. Human activities in a tropical Mexican desert: Impact of rainfed agriculture and firewood extraction on vegetation and soil. Land Degrad Dev. 30(5):494-503. https://doi.org/10.1002/ldr.3235.
Torres-Torres, F. y Rojas-Martínez, A. 2019. Suelo agrícola en México: retrospección y prospectiva para la seguridad alimentaria. Instituto de Investigaciones Económicas (IIE)-Universidad Nacional Autónoma de México (UNAM). En edición. 9(3).
Vargas, G. C. y García, O. M. 2018. Vulnerabilidad y sistemas agrícolas: una experiencia menonita en el sur de México. Soc. Ambient. 16(1):137-156. http://www.scielo.org.mx/scielo. php?script=sci-arttext&pid=S2007-65762018000100137&lng=es&tl ng=es.
Vides-Borrell, E.; Porter-Bolland, L.; Ferguson, B.; Gasselin, P.; Vaca, R.; Valle-Mora, J. and Vandame, M. 2019. Polycultures, pastures and monocultures: effects of land use intensity on wild bee diversity in tropical landscapes of southeastern Mexico. Biol. Conserv. 236(1):269-280. https://doi.org/10.1016/j.biocon.2019.04.025.
Villanueva-López, G.; Lara-Pérez, L.; Oros-Ortega, I.; Ramírez-Barajas, P.; Casanova-Lugo, F.; Ramos-Reyes, R. and Aryal, D. 2019. Diversity of soil macro-arthropods correlates to the richness of plant species in traditional agroforestry systems in the humid tropics of Mexico. Agric. Ecosyst. Environ. 286(1):1-8. https://doi.org/10.1016/j.agee.2019. 106658.
Zhang, Y.; Zhang, X.; Li, X. and He, D. 2022. Interaction of microplastics and soil animals in agricultural ecosystems. Curr. Opin. Environ. Sci. Health. 26(1):1-8. https://doi.org/10. 1016/j.coesh.2022.100327.