Revista Mexicana Ciencias Agrícolas   volume 14   number 1   January 01 - February 14, 2023

DOI: https://doi.org/10.29312/remexca.v14i1.2859

Article

Agroecological management of Macrodactylus nigripes
(Coleoptera: Melolonthidae) in corn

Karla Paulina Ortiz García1

Betzabeth Cecilia Pérez Torres

Agustín Aragón-García2

Dionicio Juárez Ramón2

Jesús Francisco López-Olguín2

1Master’s Degree in Sustainable Management of Agroecosystems-Autonomous University of Puebla-Val 1 Building. Highway to San Baltazar Tetela km 1.7, San Pedro Zacachimalpa, Puebla, Mexico. CP. 72960. (k-pao.ares@hotmail.com).

2Agroecology Center-Institute of Sciences-Benemérita Autonomous University of Puebla-Val 1 Building. Highway to San Baltazar Tetela km 1.7, San Pedro Zacachimalpa, Puebla, Mexico. CP. 72960. Tel. 222 2295500, ext. 1302. (agustin.aragon@correo.buap.mx; dionicio.juarez@correo.buap.mx; jesus.olguin@correo.buap.mx.

§Corresponding author: betzabeth.perez@correo.buap.mx.

Abstract

Macrodactylus nigripes (Bates) is a pest that attacks corn crops, causing economic losses in production. In order to find agroecological alternatives for its management, the objective was to evaluate the effect of the application of Argemone mexicana L., Ricinus communis L, Beauveria bassiana (Bals) Vuill and Metharrizium anisoplae (Metschnikoff) Sorokin, as well as the collection of M. nigripes with a beating net in corn crops. The experiment was conducted under a completely randomized block design with four repetitions, where the five control methods were tested and compared with the control treatment (water). R. communis and A. mexicana significantly decreased plant infestation by M. nigripes, increasing production by 36% and 30%, respectively. These results show that both treatments alternated with zote soap can be a good alternative for the management of this pest species.

Keywords: entomopathogenic fungi, foliage pests, plant extracts.

Reception date: October 2022

Acceptance date: January 2023

Introduction

Corn (Zea mays L.) is one of the most important agricultural crops in Mexico in the food, political, economic and social fields (Ruíz-Torres et al., 2012). Its extension in Mexico represents 30% of agricultural production and 6.6% of the country’s arable land (SAGARPA, 2017). Puebla is among the eight main corn-producing states, with a cultivation area of 525 108 ha, representing 7% of the area harvested nationally (López et al., 2020), calculating around 994 thousand ha devoted to agriculture, of which 60.1% is used for sowing corn, mostly for self-consumption and 34% for livestock feed (García and Ramírez, 2012).

One of the main factors contributing to the decrease in yields in the production of this crop in the region is the attack of pest insects (Lugo-García et al., 2012; Huerta et al., 2014; SAGARPA, 2017). Among the most economically important that cause losses in production are the grasshopper Sphenarium purpurascens, Mexican corn rootworm Diabrotica spp., corn earworm Helicoverpa zea (Boddie), beet armyworm Spodoptera exigua (Hübner) and fall armyworm Spodoptera frugiperda (J. E. Smith) (Aragón et al., 2001; Santos et al., 2003; Lugo-García et al., 2012; Rangel et al., 2014; Tulli et al., 2015) and chafer Macrodactylus nigripes (Bates), standing out as an important pest for the corn crop, decreasing its yields between 20 to 70% (Arce-Pérez and Morón, 2000; Caselín et al., 2003).

The larvae of these beetles can cause damage to the root system of the plant by feeding on it, while adults feed on the foliage and inflorescences of corn during the months of May to September, preventing the formation of grain (Altieri and Trujillo, 1987; Hernández et al., 1993). The control of M. nigripes is mainly based on the use of chemical insecticides such as carbamates and organophosphates, it is estimated that about 3 000 t of insecticides is applied every year, which, far from solving the problem, have increased it, resulting in the elimination of natural enemies, environmental pollution and the resistance of insects to this type of compounds (Wise et al., 2002; Blanco et al., 2014).

From the agroecological point of view, pest management includes a set of cultural or biological techniques that can minimize the use of chemical pesticides (Arauz, 1997). The use of plant extracts, entomopathogenic fungi and physical methods represent an option to the replacement of chemical insecticides, because they do not have a prolonged residual effect on the environment, are low cost and easy to use for producers (Vázquez et al., 2016).

The castor oil plant Ricinus communis L. (Euphorbiaceae) has a high insecticidal activity against various insects, such as the yellow sorghum aphid (Melanophis sacchari Zehntner), mosquito larva Culex, whitefly (Bermisia tabaco L.), Indian meal moth (Plodia interpunctella Hubner), agave weevil (Scyphophorus acupunctatus Gyllenhal) and fall armyworm (S. frugiperda) (Collavino et al., 2006; Pacheco, 2009; Corradine et al., 2014; Guevara et al., 2015), due to the presence of secondary metabolites such as ricin and ricinine (Rauer et al., 2012), which are found in high concentrations, mainly in seeds (Pita et al., 2004).

While Mexican prickly poppy (Argemone mexicana L.) has alkaloids such as protopine and berberine found in foliage, as well as flavonoids in flowers and seeds (Fernández-Calienes et al., 2016), which are used for their insecticidal properties against various insects such as pear blight beetles (Xyleborus dispar Fabricius), (Scolytus rugulosus Muller), grasshopper (Sphenarium purpurascens Charp), red cotton bug (Dysdercus koenigii Fabricius), oriental leafworm moth (Spodoptera litura Fabricius) and corn weevil (Sitophilus oryzae L.) (Carrillo-Rodríguez et al., 2011; Rodríguez-Flores et al., 2012; Vázquez et al., 2016; Ali et al., 2019; Vetal and Pardeshi, 2019).

With regard to the entomopathogenic fungus Beauveria bassiana (Bals) Vuill, it can harm more than 200 species of insects, including pests of great agricultural importance such as: the coffee berry borer Hypothenemus hampei (Ferrari), cabbage moth Plutella xylostella L. and the banana weevil Cosmopolites sordidus G. (Alean, 2004).

Metarhizium anisopliae (Metschnikoff.) naturally attacks more than 300 species of insects belonging to different orders, mainly Coleoptera and Hemiptera. Currently there are several studies where the susceptibility of coleopterans to this type of fungi is reported, on this, Nájera-Rincón et al. (2005) mention that the genus Phyllophaga (Coleoptera: Melolonthidae) can lead to a mortality of 49% under the effect of B. bassiana and up to 80% with M. anisopliae. Similarly, Almeida et al. (2005) report that, at different concentrations, B. bassiana causes a mortality of 96.7, 83.4 and 91.1%, respectively, on eggs, larvae and adults of Anthonomus grandis (Boheman) (Coleoptera: Curculionidae).

Based on the above, the objective was to evaluate the effect of the use of plant extracts of castor oil plant and Mexican prickly poppy, as well as the entomopathogenic fungi B. bassiana and M. anisoplae against M. nigripes and the manual collection of chafers as alternatives for the agroecological management of the corn crop in the municipality of Huejotzingo, Puebla.

Materials and methods

The experimental work was carried out in the 2017 agricultural cycle, in a rainfed plot located at the geographical coordinates 19° 10’ 30” north latitude and 98° 24’ 36” west longitude, with an altitude of 2 272 masl. The agricultural work of soil preparation for the cultivation of corn consisted of fallow, harrowing and furrowing, a white corn hybrid, Euros, was sown, the distance between furrows was 70 cm and between plants was 30 cm, the experimental plot had a total area of 1 625 m2.

The treatments that were evaluated are shown in Table 1, alternated with the applications of bar soap (zote). The experiment was established under a randomized complete block design, with six treatments and four repetitions. The experimental unit consisted of 24 corn plants and the useful plot was made up of eight central plants.

To evaluate the effect of A. mexicana, foliage, flower and seed of the plant were used, while for R. communis, it was made with the mature fruit of the plant. To obtain the plant extracts, the methodology proposed by Pérez-Torres et al. (2017) was followed, which consists of collecting these plants during March, April and May in the same locality of the study area, which were left to dry in the shade on kraft paper for 30 days, every third day the plant is turned to avoid the arrival of microorganisms that may damage it, then it is ground with an electric grinder for grain of the Nixtamatic brand, until obtaining a fine powder. The material was labeled and packed in raffia bags to be stored in a cool, dry place until the day of use.

Table 1. Treatments used for the management of M. nigripes in the corn crop.

Number

Treatment

Concentration (%)

Part of the plant used

1

R. communis

3

Seed

2

A. mexicana

3

Foliage, flower and seed

3

B. bassiana

1.110

-

4

M. anisopliae

1.110

-

5

Collection with a beating net

-

6

Control (water)

-

The plants extracts were prepared one day before each application by weighing 30 g of plant material per liter of water, throughout the experiment, it was left to stand for 24 h in order to extract the water-soluble compounds from the plant, then filtered with a fine mesh (tricot fabric) to separate the solids from the liquids, the concentrate obtained was diluted in 16 L of water and applied with a backpack sprayer, these applications were alternated with bar soap, previously grated and dissolved in water, 24 h before use, at a dose of 100 g per 16 L of water throughout the experiment. The applications were made weekly, so that one week the aqueous extract of the plant was applied and the other the soap, making a total of six applications (three of the extract and three of soap).

The entomopathogenic fungi used, B. bassiana and M. anisoplae, were obtained separately commercially (Organic Vel), the concentration was 1 x 1010 spores per gram of the product and a viability of six months. Thirty grams of each product were diluted in 16 L of water. Applications were made every 15 days, with a total of four applications. All applications were made with a backpack sprayer of 16 L capacity, throughout the phenology of the crop until flowering and in the initial phase of the appearance of M. nigripes. With respect to the treatment where the insects were collected, this was carried out every week, the collections of the organisms were carried out by means of a beating net of 30 cm in diameter, which was passed around the corn plants.

The variables evaluated were, number of infested plants, which was quantified every week before the application of each treatment, making a total of six evaluations, for this the eight plants of the useful plot were considered as 100% and the number of plants where the presence of M. nigripes was found and the production for each treatment mentioned above at the end of the crop cycle were counted, once the harvest was done, the seed was cleaned and weighed on a triple beam balance (Ohaus triple beam mechanical 2 610 g), obtaining the weight in kilograms per useful plot of each treatment; to later extrapolate to t ha-1.

For the analysis of the data, they were performed a one-way analysis of variance (Anova) and the Tukey mean test, with a significance of p≤ 0.05 to see if there were significant differences among the treatments, prior to this the normality test was performed, for the calculations and statistical tests the statistical program R Commander was used.

Results and discussion

Insect infestation in the corn plant

According to the analysis of variance on the number of infested plants, it indicates that there are significant differences among the treatments (p≤ 0.05) and the comparison of means indicates that, when applying the extract of R. comnunis, A. mexicana and the two entomopathogenic fungi alternated with soap, the percentage of plants infested with M. nigripes decreased in relation to the control treatment, where there was a greater infestation (Table 2).

Table 2. Percentages of infested plants and infestation of M. nigripes in the corn crop for each treatment.

Treatments alternated with soap

Infested plants (%) ± standard error

Decrease in infestation (%)

R. communis

16.5 ±0.57 a*

56

A. mexicana

20.9 ±0.4 a b

44.3

B. bassiana

20.9 ±0.5 a b

44.3

M. anisopliae

24 ±0.21 a b

36

Collection with beating net

28.4 ±0.27 b c

24.2

Control (water)

37.5 ±0.69 c

-

*= means with the same letter are not significantly different.

These results agree with the work carried out by Pérez-Torres (2012), who indicates that the application of the aqueous extract of castor oil plant (R. communis) alternated with bar soap (zote) at the same concentration as that used in this work reduces the infestation rate by 6.9%, protecting the crop from insects that feed on the foliage of amaranth [Epicauta cinerea Förster, Herpetogramma bipunctalis (Fabricius), Macrosiphum spp. L, Pholisora catullus (Fabricius), S. purpurascens and S. exigua] in the municipality of Atzitzihuacán.

In the same way, Aragón et al. (2014) confirm that treating the roselle crop with plant extracts alternated with soap is efficient, as it significantly reduces pest insect infestations compared to the control, being a good alternative for producers in Chiautla de Tapia, Puebla.

On this, Pérez-Torres et al. (2014) comment that, although castor oil plant extract is applied alone (without the application of soap), pest insect infestations of the foliage in the amaranth crop decrease by 27.2% with respect to the control, protecting the crop from insect damage. Ramírez (2018) expresses that this way of acting is due to the fact that this plant has a greater insecticidal activity against nematodes associated with Gardenia (Ellis).

The presence of toxic compounds such as alkaloids, phenols, ricin, ricinine and terpenoids in the seeds of this plant (Oliveira et al., 2002; Upasani et al., 2003; Demant et al., 2012) have the ability to cause three different types of reactions in insects: a) insecticidal effect that causes insect mortality (Rodríguez-Palma et al., 2017); b) feeding inhibitor (Abdalla et al., 2009); and c) insectistatic effect that inhibits normal insect development (Ramos-López et al., 2010). These characteristics could cause the treatment of R. communis to present the lowest infestation of M. nigripes in corn plants.

With respect to the treatment of A. mexicana, it caused a significant difference of 20.9%, the same as the treatment where B. bassiana was applied. These data agree with Rojas (2021), who points out that the Mexican prickly poppy extract, at the same concentration alternated with zote soap, reduces the number of insects in corn plants throughout their phenology, unlike the control treatment where only water is applied, while research carried out by Pérez-Torres (2012) confirm that, when a technological package based on plant extracts and zote soap is carried out in different crops, there is a decrease in the number of pest insect infestation, presenting a better development and protection of the crop.

The toxicity exerted by A. mexicana on insects is due to the presence of isoquinoline alkaloids such as: protopine, berberine and sanguinarine, which cause lethargy and death of the insect within a few hours of being ingested (Castillo and Lino, 2003). The presence of dihydrosanguinarine, coptisine, allocryptopine and dihydrocelerine is also reported, which, in addition to being toxic, acts as a repellent against various insects (ant, pear blight beetle, Mexican bean beetle, corn weevil, corn moth, cotton and sugarcane pests) including S. frugiperda larvae (Sharma et al., 2010).

As also confirmed by Salvadores et al. (2007), commenting that the extract of A. mexicana has anti-feeding and toxic properties on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Although all parts of the plant are considered toxic, the concentration of these alkaloids varies according to the parts of the plant used, most of which are concentrated in the seeds (Puig, 2005; Vázquez-Flota et al., 2018), in this work, the aerial part of the plant was used for the preparation of the extract, which could cause that it did not present a similar or better effect than that of R. communis in the reduction of infestation of M. nigripes.

There are few studies that report the susceptibility of coleopterans in adult stage to the application of B. bassiana and M. anisopliae, in this work it was observed that M. anisopliae presented a decrease in the percentage of infestation of 36%, while B. bassiana of 44.3%, where it had better effect with the application of the latter, these results corroborate that not only the larval stages are affected by the application of these fungi, but also adults, as reported by Almeida et al. (2005) for the species Anthonomus grandis Boheman.

Aragón et al. (2021) performed laboratory-level tests of B. bassiana for the control of S. zeamais at a concentration of 1.19, finding that the number of individuals was not as effective as when performing a combination of B. bassiana + lime, where decreasing the number of individuals and damages decreased by 3.3% at 81 days.

Corn production

The result of the production means for each treatment presented in Table 3 show that the highest production of corn was obtained in the plants that were treated with the extract of R. communis alternated with soap extract, as they presented the highest average production of 9.1 t ha-1, obtaining an increase in production of 36%. Followed by A. mexicana and the entomopathogenic fungus (M. anisopliae) with 8.7 and 8.4 t ha-1, representing an increase of 30 and 25.3% respectively, while the lowest production was obtained in the plants that were subjected to the control treatment with an average of 6.7 t ha-1.

Table 3. Percentage and increase in corn production under different treatments.

Treatments alternated with soap

Production (t ha-1 ± standard error)

Increase in production with respect to the control (%)

R. communis

9.1 ±0.24 a*

36

A. mexicana

8.7 ±0.2 ab

30

M. anisopliae

8.4 ±0.62 ab

25.3

B. bassiana

8.2 ±0.29 ab

22.3

Collection with beating net

8 ±0.08 bc

19.4

Control

6.7 ±0.07 c

-

*= means with the same letter are not significantly different.

These results are similar to those reported by Pérez-Torres et al. (2009), who reported that the production of the control is exceeded by the treatments to which this type of bioinsecticides, alternated with bar soap, is applied, because they protect the crop from insects that damage the foliage of the plants; likewise, Pérez-Torres et al. (2011) indicate that the use of aqueous extract of R. communis and the application of soap is more effective in repelling and protecting the amaranth crop against foliage insects, presenting a production of 1 105.3 kg ha-1, increasing its production up to 61%.

These results are similar to those obtained by Perales et al. (2015), when evaluating the effect of castor oil plant extract on whitefly, they found that the leaf extract of this plant applied in bioactive form reduces infestation by 49% and increases five times the yield of tomato (Solanum lycopersicum). While De la Torre (2017) indicates that the production of amaranth seed was favored with the effect of a mixture of two plant extracts, R. communis and Capsicum frutensis, reducing pests and protecting the crop.

The effectiveness of A. mexicana contrasts with what was indicated by Rojas (2021), who tested two ways of making extract of Mexican prickly poppy (aqueous and oily), presenting the highest production of corn with the oil-based extract followed by the aqueous extract with 12 371.5 and 11 107.2 kg ha-1, in addition to performing the applications alternated with bar soap. Aragón and Tapia (2009) argue that, with the applications of R. communis and A. mexicana in amaranth plants, there is better protection in the amaranth crop from damage by pest insects in the foliage and therefore a higher seed production is obtained, with 1 951 and 1 251 kg ha-1.

Relating the infestation with the production, it is observed that there is an inverse relationship, since the greater the infestation the lower the production and this is probably due to the fact that both plant extracts and entomopathogenic fungi protect corn plants from the damage caused by M. nigripes; in the same way, Upasani et al. (2003) comment that the seed of R. communis has insecticidal activity against some coleopterans, confirming the insecticidal activity of this plant on this insect in this work.

In addition, the effect of soap on insects is the decomposition, destruction or disruption of the permeability of the cuticle and cell membrane, this makes it more vulnerable to external factors such as heat and pathogens, causing desiccation and their death (Vincent et al., 2003). In immature and imago insects with soft body, soap acts by contact, dissolves the body’s cuticle to be exposed to the sun or climatic changes and it tends to dehydrate and dies, hence the application of soap alternated with the plant extract favors mortality, therefore, infestation and therefore an increase in production.

Conclusions

The application of plant extracts of R. communis and A. mexicana alternated with the application of soap is a viable alternative for the management of M. nigripes which causes damage to the corn crop in the municipality of Huejotzingo, Puebla, Mexico, since they are made from wild plants that are within the study area, it is a renewable resource, they are biodegradable, having the particularity of decomposing quickly after being applied, there is a low decrease in residual risk in food and they cause minimal impact on enemies.

Acknowledgements

The authors thank CONACYT and the Vice-Rectory of Research of Postgraduate Studies, for the economic support, through a scholarship granted to the first author to carry out the studies of the master’s degree in Sustainable Management of Agroecosystems of the Institute of Sciences of the Meritorious Autonomous University of Puebla and to carry out the present work.

Cited literature

Abdalla, M. E.; Khitma, E. and Faysal S. A. 2009. Larvicidal, adult emergence inhibition and oviposition deterrent effects of foliage extract from Ricinus communis L. against Anopheles arabiensis and Culex quinquefasciatus in Sudan. Trop. Biomed. 26(2):130-139.

Alean, C. I. 2004. Patogenicidad de diferentes hongos entomopatógenos para el control de Aleurotrachelus Socialis (Homoptera: Aleyrodidae) bajo condiciones de invernadero. Rev. Colomb. Entomol. 30(1):29-36.

Ali, H.; Nesa, M.; Rekha, S. B. and Islam, N. 2019. Dose mortality and repellent potentials of Argemone mexicana L. extracts against Sitophilus oryzae L. and Callosobruchus chinensis L. J. Entomol. Zool. Studies. 7(2):388-393.

Almeida, J. C.; Albuquerque, A. C. and Luna, A. E. A. L. 2005. Viabilidade de Beauveria bassiana (Bals.) Vuill. reisolado de ovos, larvas e adultos de Anthonomus grandis (Boheman) (Coleoptera: Curculionidae) artificialmente infectado. Arquivos do Instituto Biológico. 77(4):473-480. doi.org/10.1590/1808-1657v72p4732005

Altieri, M. A. and Trujillo J. 1987. The agroecology of corn production in Tlaxcala, México. Human Ecol. 15(2):189-220.

Aragón, G. A. y Tapia, R. A. M. 2009. Amaranto orgánico. Métodos alternativos para el control de plagas y enfermedades. Benemérita Universidad Autónoma de Puebla. Alternativas y proceso de participación social AC. Puebla, México. 63 p.

Aragón, G. A.; Castillo, V. H.; Pérez, T. B. C.; Cuate, M. V. A.; Hernández, L. R. and Aragón, S. M. 2021. Evaluation of quicklime and Beauveria bassiana for the management of maize weevil (Sitophilus zeamais) under laboratory and field conditions. J. Agric. Crop Res. 9(6):159-164. Doi: 10.33495/jacr-v9i6.21.135.

Aragón, G. A.; Morón, M. A.; Tapia, R. A. M. y Rojas, G. R. 2001. Fauna de coleóptera Melolonthidae en el rancho “La Joya”, Atlixco, Puebla, México. Acta Zool. Mex. 83:143-164.

Arauz, L. F. 1997. Hacia un uso racional de los plaguicidas sintéticos una perspectiva agroecológica. Agron. Costarric. 21(1):19-23.

Arce-Pérez, R. y Morón, M. A. 2000. Taxonomía y distribución de las especies de Macrodactylus Latreille (Coleoptera: melolonthidae) en México y Estados Unidos de América. Acta Zool. Mex. 79:123-239. Doi.org/10.21829/azm.2000.79791913.

Blanco, A. C.; Pellegaud, J. G.; Nava, C. U.; Lugo, B. D.; Vega, A. P.; Coello, J.; Terán, V. A. P. y Vargas, C. J. 2014. Maize pests in Mexico and challenges for the adoption of integrated pest managemed programs. J. Integrated Pest Managament. 5(4):1-9. Doi.org/10.1603/ IPM14006

Carrillo-Rodríguez, J. C.; Hernández-Cruz, B.; Chávez-Servia, J. L.; Vera-Guzmán, A. M. y Perales-Segovia, C. 2011. Efecto de extractos vegetales sobre la mortalidad de Tetranychus urticae koch (Acari: tetranychidae), en laboratorio. J. Interam. Soc. Trop. Hortic. 53:154-157.

Caselín, C. S.; Carrillo, S. J. L.; Llanderal, C. C. and Bravo, M. H. C. 2003. Incidence of Macrodactylus nigripes bates (Coleoptera: Melolonthidae) in corn and broad beans in Tlaxcala, México. Agrociencia. 37(3):291-297.

Castillo, V. J. y Lino, E. 2003. Efecto de extractos vegetales, goma natural y aceite vegetal sobre el control de cogollero del maíz, Spodoptera frigiperda (J. E. Smith) (Lepidoptera: Nuctidae) en la libertad, Perú. Rev. Peruana Entomol. 43(1):107-112.

Collavino, M.; Pelicano, A. y Giménez, R. A. 2006 Actividad insecticida de Ricinus communis L. sobre Plodia interpunctella hbn. (Lepidoptera: Phycitinae). Rev. Fac. Cienc. Agrar. 37(1):13-18.

Corradine, M. D. T.; Beltrán, S. I. M.; Corredor, P. Y. y Moreno, A. D. C. 2014. Eficiencia del extracto Ricinus communis para el control del mosquito Culex. Rev. Científ. 19(2):86-92. doi.org/10.14483/23448350.6496.

De la Torre, A. J. 2017. Efecto de extractos vegetales sobre larvas de lepidópteros en cultivo de amaranto en Amilcingo, Temoac, Morelos. Tesis de Maestría. Benemérita Universidad Autónoma de Puebla. Puebla, México. 83 p.

Demant, R. C. A.; Auld, D. R. y Demant, A. R. 2012. Development of bioassay to quantify the ricin toxin content of castor bean (Ricinus communis L.) seeds. Acta Sci. Agron. 34(4):397-402. Doi: 10.4025/actasciagronomy.v34i4.11284.

Fernández-Calienes, V. A.; Mendiola, M. J.; Scull, L. R.; Morier, D. L.; Linares, D. R.; Mendoza, L. D. and Cuellar, C. A. 2016. Actividad antiplasmodial de lactonas de Parthenium hysterophorus L. y alcaloides de Argemone mexicana L. en cuba. Rev. Cubana de Medicina Tropical. 68(2):136-147.

García, S. J. A. y Ramírez, J. R. 2012. Demanda de semilla mejorada de maíz en México: identificación de usos y zonas de producción con mayor potencial de crecimiento. Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). Texcoco, Estado de México. 156 p.

Guevara, L.; Andrio, E.; Cervantes, F.; Rodríguez, D.; Robles, R.; Mondragón, W. and Pérez, D. 2015. Efecto bioinsecticida de extracto etanolico de higuerilla (Ricinus communis L.) y lantana (Lantana camara L.) sobre mosca blanca (Bemisia tabaci Genn) en tomate. Rev. Cienc. Natur. Agropec. 2(3):428-434.

Hernández, V. S.; Benz, B. F. y Arredondo, H. C. B. 1993. Densidad estacional de Macrodactylus murinus (Scarabaeidae), en San Miguel, Sierra de Manantlán, Jalisco. Agrociencia. 4(2):187-195.

Huerta, J. A. F.; Espinoza, A.; Téllez, J. A. P.; Maqueda G. A. P. y Arana, C. A. 2014. Control biológico del chapulín en México. BioTecnología. 18(1):28-49.

López, A. P.; Ortiz, T. E.; Gil, M. A.; Guerrero, J. D.; Taboada, G. O. R.; López, S. H. y Hernández, G. A. 2020. Patrón varietal y rendimiento de grano de maíces locales del Valle de Tehuacán, Puebla. Rev. Fitotec. Mex. 43(4-A):525-532. https://doi.org/10.35196/rfm.2 020.4-A.525.

Lugo-García, G. A.; Ortega-Arenas, L. D.; Aragón-García, A.; González-Hernández, H.; Reyes-Olivas, A. y Morón, M. A. 2012. Especies de gallina ciega (Coleoptera: Scarabaeoidea) asociadas al cultivo de maíz en Ahome, Sinaloa, México. Agrociencia. 46(3):307-320.

Nájera-Rincón, M. B.; García-Martínez, M.; Crocker, R. L.; Hernández-Vázquez, V. y Rodríguez-del Bosque, L. A.  2005. Virulencia de Beauveria bassiana y Metarhizium anisopliae, nativos del occidente de México, contra larvas de tercer estadio de Phyllophaga crinita (Coleoptera: Melolonthidae) bajo condiciones de laboratorio. Fitosanidad. 9(1):33-36.

Oliveira, R. R. F.; Oliveira, F. P. y Fonseca, A. M. 2002. As folhas de palma christi-Ricinus communis L. Euphourbiaceae jussieu. Revisão de conhecimientos. Rev. Lecta, Bragança Paulista. 20(2):183-194.

Pacheco, C. S. 2009. Efecto del extracto hidroetanólico de higuerilla Ricinus communis L. sobre el adulto del picudo del agave Scypophorus acupunctatus Gyllenhal. Tesis de Maestría. Instituto Politécnico Nacional. 75 p.

Perales, S. C.; Bocanegra, G. J.; Carrillo, R. J. C.; Chávez, S. J. L.; Silos, E. S.; Aguilar, O. L. y Tafoya, R. F. 2015. Efecto de extractos vegetales en mosquita blanca bajo dos esquemas de aplicación. Rev. Mex. Agroecos. 2(1):1-7.

Pérez-Torres, B. C. 2012. Diagnóstico y control de plagas del cultivo de amaranto Amaranthus hypochondriacus L. Bajo una agricultura orgánica en las faldas del volcán Popocatépetl. Tesis de Doctorado. Benemérita Universidad Autónoma de Puebla. México. 130 p.

Pérez-Torres, B. C.; Aragón G. A.; Pérez, R. A.; Hernández, L. R. y López-Olguín, J. F. 2011. Evaluación de extractos vegetales y jabón de pastilla para el control de plagas del amaranto en las faldas del Popocatépetl, Puebla. In: Bernal, M. H. y Ramírez, V. B. Ed. Investigación interdisciplinaria para el desarrollo rural en Puebla y Tlaxcala. Colegio de Posgraduados-Campus Puebla. México. 166-182 pp.

Pérez-Torres, B. C.; Aragón, G. A.; Bautista, M. N.; Tapia, R. A. M. y López-Olguín, J. F. 2009. Entomofauna asociada al cultivo de Jamaica (Hibiscus sabdariffa L.) en el municipio de Chiautla de Tapia, Puebla. Acta Zool. Mex. 25(2):239-247.

Pérez-Torres, B. C.; Aragón, G. A.; Cuate, M. V.; López-Olguín, J. F.; Aragón, S. M. y Lugo, G. G. A. 2017. Efecto de la aplicación en campo de mezclas de extractos vegetales sobre la presencia y daños de insectos plaga del cultivo de Amaranthus hypochondriacus L. Rev. Fac. Agron. 34(4):477-496.

Pérez-Torres, B. C.; Aragón-García, A.; Román-Fernández, L. R.; Castillo-Hernández, D.; Diménez-García, D. y Romero-Arenas, O. 2014. Efecto de los extractos acuosos sobre las plagas del follaje en el cultivo de amaranto en el municipio de Tochimilco, Puebla. Entomol. Mex. 13(1):251-256.

Pita, R.; Anadón, A. y Martínez, L. M. R. 2004. Ricina: una fitotoxina de uso potencial como arma. Rev. Toxicol. 21(2):51-63.

Puig, H. J. F. 2005. Mis temas de investigación. Focus 4(1):51-59.

Ramírez, H. R. S. 2018. Evaluación de los extractos vegetales en el control de nematodos fitopárasitos asociados al cultivo de gardenia (Gardenia jasmininoides Ellis). Tesis de Maestría. Universidad Veracruzana. 80 p.

Ramos-López, M. A.; Pérez-Ortega, G. S.; Rodríguez-Hernández, C.; Guevara-Fefer, P. and. Zavala-Sánchez, M. A 2010. Activity of Ricinus communis (Euphorbiaceae) against Spodoptera frugiperda (Lepidoptera: noctuidae) Afr. J. Biotechnol. 9(9):1359-1365. Doi:10.5897/AJB10.1621.

Rangel, N. J. C.; Vázquez, R. M. F. y Rincón, C. M. C. 2014. Caracterización biológica y molecular de cepas exóticas de baculovirus SfNPV, con actividad bioinsecticida hacia una población mexicana del gusano cogollero del maíz Spodoptera frugiperda (Lepidoptera: Noctuidae). Interciencia. 39(5):320-326.

Rauer, D. C. A.; Auld, D. and Rodrigues, D. M. A. 2012. Development of bioassay to quantify the ricin toxin content of castor bean (Ricinus communis L.) seeds. Acta Sci. Agron. 34(4):397-402.

Rodríguez-Flores, E.; Aldana, L. L. L.; Valdés, E. M. E.; Salinas, S. D. O. y Gutiérrez, O. M. 2012. Actividad de fitoextractos en Spodoptera frugiperda J. E. Smith (Lepidoptera: noctuidae). Entomol. Mex. 11(1):158-162.

Rodríguez-Palma, E.; Aragón-García, A.; Aragón-Sánchez, M.; Pérez-Torres, B. C. y López-Olguín, J. F. 2017. Efectos del extracto vegetal de higuerilla (Ricinus communis L. 1753). Sobre las larvas del depredador natural Chrysoperla Carnea Stephens (Neuroptera: Chrysopidae). Entomol. Mex. 4:73-78.

Rojas, R. A. 2021. Diagnóstico y efecto de extractos vegetales sobre insectos asociados al cultivo de maíz (Zea mays) en Cuautinchán, Puebla. Tesis de Licenciatura. Facultad de Ciencias Biológicas. Benemérita Universidad Autónoma de Puebla. Puebla, México. 50 p.

Ruíz-Torres, N. A.; Rincón-Sánchez, F.; Bautista-Morales, V. M.; Martínez-Reyna, J. M.; Burciaga-Dávila H. C. y Olvera-Esquivel, M. 2012. Calidad fisiológica de semilla en dos poblaciones de maíz criollo mejorado. Agraria. 9(2):43-48.

SAGARPA. 2017. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. https://www.gob.mx/agricultura.

Salvadores, U. Y.; Silva, G. A.; Tapia, V. M. y Hepp, G. R. 2007. Polvos de especias aromáticas para el control de gorgojo del maíz, Sitophilus zeamais Motschulsky, en trigo almacenado. Agric. Téc. 67(2):147-154. Doi.org/10.4067/S0365-28072007000200004.

Santos, L. M.; Redaelli, R. L.; Diefenbach, G. L. and Efrom, C. F. 2003. Larval and pupal stages of Spodoptera frugiperda (J. E. Smith) (Lepidopters: noctuidae) and sweet and field corn genotypes. Braz. J. Biol. 63(4):627-633.

Sharma, S.; Chandra, M. S. and Kohili, D. V. 2010. Pharmacological screening effect of ethanolic and methanilic extracto fruits of medicinally leaves. Digest J. Nanomat. Bio. 5(1):229-232.

Tulli, M. C.; Vincini, A. M.; Pascucci, J. I.; Carmona, D. M. y Baquero, V. G. 2015. Bioecología de Helicoverpa zea (Lepidoptera: Noctuidae) en cultivos de maíz dulce con diferente manejo de hábitat. Entomotropica. 31(3):23-35.

Upasani, S. M.; Kotkar, H. M.; Mendki, P. S. and Maheshwari, V. L. 2003. Partial characterization and insecticidal properties of Ricinus communis L. foliage flavonoids. Pest Manag. Sci. 59(12):1349-1354. Doi: 10.1002/ps.767.

Vázquez, J. M. A.; Aragón, G. A.; Bibbins, M. M. D.; Hernández, C. D.; Nava, G. S. B. y Pérez, T. B. C. 2016. Control de Sphenarium purpurascens con Beauveria bassiana y extractos vegetales en amaranto (Amaranthus hypocondriacus L.). Rev. Mex. Cienc. Agríc. 7(2):235-247.

Vázquez-Flota, F.; Rubio-Piña, J.; Xool-Tamayo, J.; Vergara-Olivares, M.; Tamaño-Ordoñez, Y.; Monforte-González, M.; Guízar-González, C. y Mirón-López, G. 2018. Distribución tisular de transcritos involucrados en la biosíntesis de alcaloides bencilisoquinolícos en plantas maduras de Argemone mexicana L. (Papaveraceae). Rev. Fitot. Mex. 41(1):13-21. https://doi.org/10.35196/rfm.2018.1.13-21.

Vetal, D. S. and Pardeshi, A. B. 2019. Larvicidal potential of Argemone mexicana L. Plant extracts against Spodoptera litura Fab. The Pharma Innov. J. 8(6):698-702.

Vincent, C.; Hallman, G.; Panneton, B. and Fleurat, L. F. 2003. Management of agricultural insects with physical control methods. Annual Rev. Entomol. 48:261-81. Doi: 10.1146/annurev. ento.48.091801.112639.

Wise, J. C.; Gut, L. J.; Isaacs, R.; Schilder, A. M. C.; Zandstra, C.; Hanson, E. and Shane, B. 2002. Fruit management guide. East Lansing, Michigan, USA: MSU. Extension Publication. E-54.