Revista Mexicana Ciencias Agrícolas   volume 11   number 6   August 14 - September 27, 2020

DOI: https://doi.org/10.29312/remexca.v11i6.2612

Article

Response of Coffea arabica L. to the application of organic
fertilizers and biofertilizers

Daniela Arisbet Canseco Martínez1

Yuri Villegas Aparicio2

Ernesto Castañeda Hidalgo

José Cruz Carrillo Rodríguez2

Celerino Robles3

Gisela Margarita Santiago Martínez3

1Master of Science in Productivity in Agroecosystems-Technological Institute of the Valley of Oaxaca (ITVO)-National Technology of Mexico (TecNM). (daniela.canmar@outlook.com). 2Technological Institute of the Valley of Oaxaca-National Technological Institute of Mexico. Ex-Hacienda de Nazareno s/n. Santa Cruz Xoxocotlán, Oaxaca, Mexico. Tel. 951 5170788. CP. 71230. (yuriva1968@gmail.com) 3Interdisciplinary Research Center for Comprehensive Regional Development. National Polytechnic Institute Oaxaca Unit (CIIDIR-IPN). 1003 Horn Street, Santa Cruz Xoxocotlan, Oaxaca, Mexico. CP 71230. (crobles-38@yahoo.it; gissant68@hotmail.com).

§Corresponding author: ernesto.ch@voaxaca.tecnm.mx.

Abstract

Organic coffee is in high demand in the international market and its cultivation is used as a hub for community development. Oaxaca is one of the states where ecological alternatives are implemented in a sustainable way to produce coffee. The objective of the study was to evaluate the effect of organic fertilizers and biofertilizers on the growth dynamics of C. arabica L. in plants established in the var. Typica renovated three years ago. The study was carried out at the El Nueve farm, Santa Maria Huatulco, Oaxaca, during 2018. The organic fertilizers evaluated were: Vermicompost (L), Natur-fertilizer® (Na), Bio-Orgamin (Bo) and Bat Guano (Gm). The biofertilizers were based on Azotobacter sp. (Az) and Glomus cubense (Gc). In addition to their combinations and a control (T), for a total of 17 treatments. Data were subjected to analysis of variance and Tukey tests. The variables evaluated were plant height (Ap), stem diameter (Dt), slenderness index (IE) and number of knots (Nn). The coffee trees responded positively to organic fertilizers and biofertilizers, obtaining significant differences between treatments with a level of significance (p≤ 0.05), for Ap, with the combination of Gm+L+Gc, heights of 216 cm were obtained. For Dt, the T showed the highest value with 3.16 cm. As for Nn, the combination of Gm+L+Gc was the one that generated the highest number with 56.33 knots. The use of organic fertilizers and biofertilizers in combination is essential for the good growth of coffee trees in renovated plantations.

Keywords: Azotobacter sp., Glomus cubense, bat guano, Bio-Orgamin.

Reception date: March 2020

Acceptance date: August 2020

Introduction

Coffee (Coffea arabica L.) is grown in more than 80 countries in Latin America, Africa and Asia. It is one of the most important agricultural products in the world in terms of production, commercial, economic and social value for the actors that participate in the agro-productive and food chain (Coutiño et al., 2017). It was introduced to Mexico around 1790 (Medina et al., 2016) and in recent years production has decreased and in 2016 it occupied the 11th position, which represents 2.1% of world production (FIRA, 2018) is the eighth producer coffee world (OIC, 2014).

Production depends on the family labor force of small producers under traditional management with the use of rustic nurseries for seedling production, shade planting, pruning, etc. (SAGARPA, 2018). There are more than 500 000 coffee growers in 12 states of the country, where 90% of them have areas of less than 5 ha (Flores, 2015).

700 000 ha are cultivated nationwide, with six states concentrating 97.42% of the total supply, for the 2017-2018 cycle, the states of Chiapas (40.7%), Veracruz (24.6%), Puebla (15.9%), Oaxaca (8.27%), Guerrero (4.56%) and Hidalgo (3.26%) stand out (SIAP, 2018). Oaxaca is one of the states where various organizations have been developed that commercialize coffee in market niches such as organic production, fair trade, organic coffees and shade coffee (CEDRSSA, 2018).

The above is thanks to the ideal conditions for cultivation, with mountainous areas, being a plantation with a pre-productive period of approximately three years and a productive life of up to 40 years, in addition, it is cultivated at altitudes ranging from 900 and 1 500 m, with temperatures of 16 to 22 °C and rainfall of 750 to 3 000 mm (Espinosa et al., 2016).

Despite this, coffee production and yields have been affected in recent years by up to 50%. According to SAGARPA (2017), the main causes include prices on the world market, the advanced age of coffee plantations and the low content of nutrients in cultivated soils. On the other hand, the abandonment and neglect of the plantations due to low prices, high incidence of pests and diseases that affect quality and yield, especially the presence of broca (Hypothenemus hampeim Ferrari) and rust (Hemileia vastratix Berkeley & Broome) (Reyes et al., 2018).

Despite the effect they cause, the application of technological packages for their prevention and control is almost null, 9.1% of the units use chemical fertilizers, 2.3% use improved seed, 2.5% organic fertilizers, 7% herbicides, 5% insecticides and other type of technology 0.1% (SAGARPA, 2018).

This leads to considering alternatives for coffee production with a greater possibility of implementing ecological and sustainable alternatives (Mosquera et al., 2016). The approach is based on the use of agroecological practices; as well as the use of basic techniques used in organic agriculture, which are of vital importance (Aguilar, 2014). Among them, the incorporation of organic fertilizers into the soil stands out to improve its physical, chemical, biological and sanitary characteristics, to increase its fertility (Boudet et al., 2015).

The benefits generate vigorous growth of roots, foliage, flowering and fruiting, allowing plants greater resistance against pests and diseases and their rapid recovery after harvest (Aguilar et al., 2016). In addition, the insertion of biofertilizers has now been achieved, which by containing live or latent microorganisms (fungi and bacteria, alone or in combination) and when used in crops, stimulates growth and increases in yields, and therefore, production of the coffee plantations (Aguado, 2012).

As well as, they increase the processes of absorption and translocation of nutrients in plants; since these inputs allow to improve the development of the crop when they interact with the plants, creating symbiosis with each other (Moises et al., 2015). So the proposed objective was to evaluate the effect of different organic fertilizers and biofertilizers on morphological variables of C. arabica L. established in the field.

Materials and methods

Characteristics of the study area

The study was carried out at the El Nueve coffee farm, located in the municipality of Santa Maria Huatulco, Oaxaca, Mexico, located on the banks of the Copalita river basin at coordinates 15° 55’ 57” north latitude, 96° 17’ 08” west longitude, at an altitude of 1 250 m, average annual precipitation of 1 364 mm and an annual temperature of 21 °C.

The farm has an area of 200 ha, 160 ha have a vegetation of medium sub-evergreen jungle and the remaining 40 are organic coffee under an agroforestry system (INEGI, 2019). The farm is administratively included in the Coffee Product System and is associated with the Confederation of Oaxacan Coffee Growers, AC, which allows it to export quality and differentiated coffee (Figure 1).

Figure 1. Location of the El Nueve farm, Santa María Huatulco, Oaxaca.

For the establishment of the experiment a typical variety coffee plantation was used, selecting a batch of coffee trees established under a traditional agroforestry system under regulated shade in lands with a great diversity of trees, especially of the Inga genus, with average slopes of 30%, with organic fertilization, standardized coffee trees, abundant foliage, good phytosanitary status and renewed four years ago.

Before applying the treatments, soil samples were taken from four sites in the experimental zone, high position (1 297 masl) and low position (1 284 masl) of the slope. According to what is stated in the Official Mexican Standard NOM-021-RECNAT-2000 (SEMARNAT, 2000), the texture was determined by the Bouyocus method, pH by potentiometry in water (ratio 1:2), electrical conductivity (EC) by the conductimeter method, the organic matter content (OM) by the Walkley and Black method, humidity by the gravimetric method; determination of phosphorus (P) by the method of Bray and Kurtz 1, interchangeable bases of calcium and magnesium (Ca, Mg) with 1N ammonium acetate, pH 7 as an extractant solution; interchangeable acidity by the procedure of potassium chloride and total nitrogen (Nt) by using the formula: , with the help of obtaining the percentage of organic carbon, so the value was substituted in the formula CO for the percentage value of each sample already analyzed.

A completely randomized design was used. A total of 17 treatments with three repetitions were established, where one plant represents one repetition. The organic fertilizers used were diluted in 8 L of water, leaving them to rest for two hours for their subsequent application at the foot of the plant (drench) making a crescent or semicircle at the top of the slope. The biofertilizers were diluted in 1 L of water and applied instantly under the same scheme. The same individual doses were used to prepare the combination treatments (Table 1).

Table 1. List of treatments under study.

Treatment

Organic fertilizers and biofertilizers

Dose plant-1

T1

T

Without application

T2

L

2 kg in 8 L

T3

Na

2 kg in 8 L

T4

Bo

2 kg in 8 L

T5

Gm

2 ml L-1

T6

Az

4 ml L-1

T7

Gc

10 g L-1

T8

Az+Gc

4 ml +10 g L-1

T9

Gm+L

2 ml+2 kg +8 L

T10

Gm+Az

2 ml+4 mL L-1

T11

Gm+Gc

2 ml+10 g L-1

T12

L+Az

2 kg +4 ml+ 8 L

T13

L+Gc

2 kg +10 g + 8 L

T14

Gm+Az+Gc

2 ml+4 ml +10 g+ 8 L

T15

Gm+L+Az

2 ml +2 kg +4 ml + 8 L

T16

Gm+L+Gc

2 ml +2 kg +10 g + 8 L

T17

L+Az+Gc

2 kg +4 ml +10 g+ 8 L

The products used are certified as organic products by the certifying agency CERTIMEX organic product CMX-276-2006-48-48-48 and were purchased at the Oaxaca State Center for Organic Products (CEFO).

Variables evaluated

The application of the treatments began in the first days of March and ended in April 2019. For the evaluation of the response variables, four measurements were made at 90-day intervals, starting one month after the first application (dda) of treatments. The variables evaluated were plant height (Ap) (cm) and stem diameter (Dt) (Cm), at the beginning of production the number of total knots per plant (Nn) was recorded.

Statistical analysis

The experimental design was completely random. The data of the measured variables were subjected to a verification process of variance homogeneity and error normality (Montgomery, 2005). When the tests were negative, the transformations corresponding to log10 (x) were made to comply with the assumptions of normality and homogeneity of variances (Steel and Torrie, 1988). The data were subjected to analysis of variance and comparison of means (Tukey, 0.05). The statistical software used was SAS/STAT® 9.3 (SAS Institute Inc. 2011).

Results and discussion

Physicochemical properties of the experimental study area

Physical-chemical analyzes of the soils were carried out at the site where the experiment was established at four different points, two for each zone of high, low and altitudinal gradient. According to the criteria of NOM-021-SEMARNAT-2000, the textural composition of the soils in the study area varied without following a defined pattern between sandy to loamy-sandy, which indicates that despite the rains there are no problems due to excess water and that there is a strong process of washing of nutrients and susceptibility to erosion by rain.

These textures are similar to those reported by Contreras et al. (2019), who found loamy-sandy and sandy textures in a study of agroecological practices and their influence on soil fertility in a coffee community in the state of Puebla. Likewise, Gómez et al. (2018), mention that in soils with a high presence of sand, rapid drainage of rainwater is promoted. It should be noted that, to obtain a sustainable coffee production, the soil must have a clayey texture (Aranda, 2010).

According to Palma et al. (2007), the unconsolidated soils of fine and medium texture have a strong alteration and washing and are considered as old lands subject to erosion processes. The pH value varied in a range of 4.43 to 4.92, being more acidic in the upper parts, which is logical due to the dragging and leaching of materials due to the effect of the rains.

According to the NOM-021-RECNAT-2000 standard, soils with values <5 are classified as strongly acidic soils. Similar results are reported by Rodríguez et al. (2016), when evaluating spatial variability of the chemical attributes of the soil in the yield and quality of coffee, where they report a pH of 4.73. Duicela (2011), reports that the soils suitable for coffee cultivation must have a slightly acidic pH between 5.5 and 6.5 and indicates that acidity values of <5 or above 6.5 hinder the nutrition of the coffee plantations.

The EC values found were 0.04-0.06, which means that they are in the range of a concentration <1, so they are classified as soils with negligible effects on salinity. The results obtained are similar to those reported by Gómez et al. (2018), where they mention that in soils that C. arabica L. is produced in Chiapas, they have an EC of 0.02 to 0.09 dS m-1. Aranda (2010), indicates that low EC values favor coffee crops. In addition, coffee does not tolerate saline soils, so that when rains are scarce, the concentration of salts increases.

The OM values vary in the range of 2.46 to 5.9%, depending on the gradient of the slope, being low in the upper parts and increasing for the lower parts. This classifies soils with medium values for high sites and with high content for low sites, as they are non-volcanic soils. Noriega et al. (2014), reports OM averages in coffee soils of 5.14%, which agrees with data obtained in the study. Cabon (2015); Theriez (2015), mention that coffee plantations with shade trees provide a greater amount of OM.

As for the high values of OM in the lower parts of the farm, it is explained why, being in the low position of the slope, it is a receptor site for organic and mineral materials, presenting a good state of conservation and low intensity of erosion (Zavala et al., 2014). In turn, Noriega et al. (2014), mention that medium and high OM values, acidity could be limiting the growth of bacteria and limiting the mineralization process.

The soil moisture had values of ≤5%, which indicates a low capacity to retain moisture, so plants can suffer deficiencies in the absence of rain, which occurs in the months of March and April, due to than the rainy season, which usually begins in early May. In this regard, Duarte (2016) points out that sandy soils retain moisture between 7.5 and 20.5%. This soil characteristic is a function of other factors such as texture and structure, they are also shallow soils with high slopes.

This capacity represents the reserve of the plants to absorb the necessary amounts for their energy and nutrient cycles (Villareyna, 2016). The nutritional elements that the coffee tree requires in greater quantity are: N, P and K, and in smaller quantities: Ca, Mg, S, Cl, Zn, Mn, B and Cu. The lack of any of these nutrients affects their growth and development (Duicela, 2011). Percentages were obtained between the values of 0.17-0.39, considered high (0.5-0.25) and very high (0.25) in the total N content, possibly due to the high content of organic matter. Contreras et al. (2019), in his study of agroecological practices in coffee plantations reports values of 0.22%, in turn he mentions high yields and productivity.

However, they are considered low values compared to those reported by Larios et al. (2014), who found values of 0.5% in systems with agroecological practices and 0.35% in conventional systems. The P contents found were <15 mg kg-1, low values with respect to those required by the crop, coinciding with Galindo (2013), who reported that, in Santander Colombia coffee soils, the levels are very low, <0.4 mg kg-1. Roger et al. (2014), indicate that this element has little mobility in the soil.

The Ca contents were practically negligible, being in the range of <2, classified as very low concentration for this element. Gómez et al. (2018), mention that in soils where coffee is produced, they found low values of 4.78 mg kg-1, values much higher than those reported, indicating that plants can suffer from the deficiencies of the element in the soil.

Mg has very low levels, <0.5 classifying in a very low class. Jaramillo (2002), indicates that the low contents of N, Ca, P, Mg, are influenced by leaching, which intensifies if the rainfall is intense and prolonged. Likewise, Silva et al. (2013), indicate that soils with acidic pH (<5.5) block the absorption of P, Ca and Mg. Since the soils in coffee growing areas have low values, it is for this reason that the use of mycorrhizae is recommended, which improves the absorption of water, phosphate ion and nutrients such as N, K, Ca and Mg. As well as the incorporation of phosphoric rock, mineral source and organic fertilizers (López et al., 2019) (Table 2).

Table 2. Physicochemical properties of the sites in the study area.

Sampling points

Texture

pH

EC

(dS m-1)

OM

(%)

Moisture

(%)

N

(%)

P

(mg kg-1)

Ca

(cmol kg-1)

Mg

(cmol kg-1)

Site 1 high part

Sandy-loamy

4.36

0.06

2.46

5.09

0.33

2.25

0.00087

0.0023

Site 2 high part

Sandy

4.46

0.04

3.34

2.69

0.22

2.05

0.0016

0.0013

Site 1 lower part

Sandy-loamy

4.92

0.05

2.6

5.18

0.17

nd

0.0025

0.00067

Site 2 lower part

Loam sandy

4.43

0.04

5.9

5.09

0.39

2.08

nd

nd

ND= not detectable.

Plant height

The evaluation results show that in all the treatments they showed significant differences over time. At the end of the evaluation, the maximum Ap value was 216 cm for treatment with the combination of Gm+L+Gc.

These results agree with those obtained by Plaza et al. (2015), where they found that the application of organic fertilizers influences the agronomic and productive behavior of Coffea canephora plantations, by reporting plant heights of ≤220 cm for low-growing plants, values of ≤300 cm in medium-sized plants and >301 cm for tall plants, evaluated over a period of eight months. The lowest values were for treatments L (120 cm), L+Az (140 cm), L+Gc (133 cm) (Table 3).

The combination of organic fertilizers and biofertilizers generates growth in plants. These results coincide with Roman et al. (2013), where they report that the greater the amount of organic matter, the greater the microbial quantity since when applying organic fertilizers, there is a greater possibility of nutrient release and when applied to the soil, the decomposition process continues.

Table 3. Response of organic fertilizers and biofertilizers over time in the height variable.

Bioproducts

Height

90 dda

180 dda

270 dda

360 dda

T

182.33 ±13.01 ab

188.67 ±9.01 ab

194 ±6.55 ab

199.3 ±5.85 a

L

104.33 ±17.24 c

111.67 ±13.42 c

116 ±13.07 c

120 ±13.07 a

Na

134.67 ±5.5 abc

139.33 ±4.5 abc

143.67 ±4.04 abc

147.7 ±4.04 a

Bo

135 ±22.91 abc

139.33 ±23.79 abc

143 ±23.25 abc

147 ±23.59 a

Gm

149 ±12.76 abc

153.67 ±12.34 abc

158.33 ±11.93 abc

162 ±11.78 a

Az

167.33 ±46.69 abc

171.33 ±46.49 abc

180.67 ±51.85 abc

184 ±49 a

Gc

167.33 ±16.16 abc

172 ±17.08 abc

177.67 ±16.62 abc

182.7 ±15.63 a

Az+Gc

152.33 ±28.04 abc

156 ±27.73 abc

160 ±27.73 abc

163.3 ±27.13 a

Gm+L

162.33 ±37.09 abc

166.33 ±36.46 abc

170.33 ±36.46 abc

174.3 ±36.46 a

Gm+Az

145 ±6.24 abc

149 ±5.29 abc

153 ±5.29 abc

157 ±5.29 a

Gm+Gc

134.67 ±16.16 abc

137.67 ±16.56 c

141.67 ±16.56 abc

145.7 ±16.56 a

L+Az

129.33 ±14.74 c

132.67 ±15.14 c

136.33 ±14.57 c

140.7 ±14.36 a

L+Gc

122.33 ±7.5 c

126 ±7 c

130 ±7 c

133 ±6.55 a

Gm+Az+Gc

148.67 ±27 6abc

151.33 ±25.65 abc

154.67 ±25.1 abc

157.7 ±25.1 a

Gm+L+Az

144.33 ±33.54 abc

148.33 ±33.54 abc

152 ±33.86 abc

155.7 ±32.29 a

Gm+L+Gc

205.67 ±23.62 a

209.33 ±23.24 a

213 ±22.86 a

216.7 ±22.5 a

L+Az+Gc

135.33 ±23.24 abc

139.33 ±23.24 abc

143.33 ±23.24 abc

480.3 ±592.33a

Cv

3.06

2.97

2.89

6.5

dda= days after application of organic fertilizers and biofertilizers; T= control; L= vermicompost; Na= Natur-Abono®; Bo= Bio-Orgamin; Gm= bat guano; Az= Azotobacter sp.; Gc= Glomus cubense. Averages with the same letter per column do not differ significantly (Tukey, p< 0.05). The mean ± standard error is included; cv= coefficient of variation; **= highly significant (p≤ 0.01); ns= not significant.

Generally, the organic fertilizers used as a substrate for the production of plants are relevant agroecological alternatives, since these, in combination with the soil, favor the physical, chemical and biological properties of the substrate and an adequate growth and development of the plants (Aguilar et al., 2017). Pérez et al. (2002), indicate that the application of HMA in combination with Az have a positive effect on growth and development in plantation.

Stem diameter

It was found that from 180 to 360 dda, there are significant differences between treatments. The highest Dt found was 3.16 cm for T, very different from the combinations of fertilizers and biofertilizers, which were those with the smallest diameters, Gm+Az (2.3 cm), Gm+Gc (2.23 cm), L+Gc (2.16 cm) (Table 4).

Table 4. Response of organic fertilizers and biofertilizers over time in the variable stem diameter.

Bioproducts

Diameter (cm)

90 dda

180 dda

270 dda

360 dda

T

2.16 ±0.28 a

2.6 ±0.17 a

2.83 ±0.15 a

3.16 ±0.15 a

L

1.6 ±0.17 a

1.86 ±0.11 ab

2.13 ±0.15 ab

2.36 ±0.11 ab

Na

1.96 ±0.05 a

2.26 ±0.05 ab

2.5 ±0 ab

2.8 ±0 ab

Bo

1.9 ±0.17 a

2.26 ±0.25 ab

2.53 ±0.25 ab

2.76 ±0.25 ab

Gm

1.76 ±0.25 a

2 ±0.2 ab

2.26 ±0.25 ab

2.5 ±0.2 ab

Az

1.73 ±0.25 a

2 ±0.26 ab

2.2 ±0.26 ab

2.5 ±0.26 ab

Gc

7.1 ±9.44 a

1.9 ±0.17 ab

2.16 ±0.15 ab

2.43 ±0.11 ab

Az+Gc

1.26 ±0.46 a

1.83 ±0.57 ab

2.1 ±0.6 ab

2.43 ±0.6 ab

Gm+L

2.1 ±0.17 a

2.36 ±0.11 ab

2.63 ±0.15 ab

2.93 ±0.11 ab

Gm+Az

1.6 ±0.17 a

1.83 ±0.15 ab

2.1 ±0.17 ab

2.3 ±0.17 b

Gm+Gc

1.5 ±0 a

1.76 ±0.05 b

2.03 ±0.05 ab

2.23 ±0.11 b

L+Az

1.76 ±0.25 a

2.1 ±0.3 ab

2.33 ±0.35 ab

2.63 ±0.35 ab

L+Gc

1.36 ±0.23 a

1.6 ±0.17 b

1.86 ±0.15 b

2.16 ±0.15 b

Gm+Az+Gc

1.83 ±0.28 a

2.1 ±0.34 ab

2.3 ±0.34 ab

2.53 ±0.28 ab

Gm+L+Az

2± 0.5 a

2.26±0.55 ab

2.5 ±0.5 ab

2.73 ±0.5 ab

Gm+L+Gc

2.1 ±0.17 a

2.36 ±0.11 ab

2.6 ±0.17 ab

2.9 ±0.17 ab

L+Az+Gc

1.73 ±0.25 a

1.96 ±0.2 ab

2.26 ±0.2 ab

2.5 ±0.17 ab

Cv

61.17

18.21

14.61

11.42

dda= days after application of organic fertilizers and biofertilizers; T= control; L= vermicompost; Na= Natur-Abono®; Bo= Bio-Orgamin; Gm= bat guano; Az= Azotobacter sp.; Gc= Glomus cubense. Averages with the same letter per column do not differ significantly (Tukey, p< 0.05), the mean ±standard error is included; cv= coefficient of variation. **= highly significant (p≤ 0.01). ns= not significant.

These results coincide with Plaza et al. (2015), who found significant differences in Dt when evaluating organic fertilizers in coffee with values of ≤3 cm, which indicates that good vegetative growth must be ensured to obtain high production levels. In this regard, Adriano et al. (2011), mention in their biofertilization research that there is a mutualistic interaction in HMA, the root of plants and Az. Cilas et al. (1998), indicate that morphological traits, stem diameter, plant height and number of primary branches, are genetically correlated with yield. Casique et al. (2018), mention that the Dt is an indicator that reveals the behavior of the height and defines the production of the plants.

Number of knots

For this variable, the application of treatments did not have the expected effect, that is, no significant statistical differences were found in any evaluation (p≥ 0.05). It is attributed to the fact that the crop had possibly formed the reproductive structure from the previous year; however, the highest value was obtained by the combination of two organic fertilizers and a biofertilizer, Gm+L+Gc with 56.33 Nn.

It is evident that when a higher Nn is found, the number of fruits is greater and therefore higher yields (Cascante and Furcal, 2018). The Na obtained the lowest Nn with 12.33. Likewise, these results have an impact on the climatic conditions of each place, so that as rainfall increases, there is a greater probability of node losses at the time of their formation and defoliation of the previous harvest, in addition, the productive knots vary each year to the extreme of the bandola (Duarte, 2016) (Table 5).

Table 5. Response of organic fertilizers and biofertilizers to the number of stem knots.

Treatments

Number of knots

30 dda

90 dda

150 dda

210 dda

T

6 ±8.66 a

8.66 ±6.5 a

11.33 ±5.5 a

35.67 ±16.86 a

L

2.66 ±2.08 a

5 ±0 a

9 ±4.35 a

15 ±2.64 a

Na

4 ±2.64 a

6.66 ±2.88 a

13.67 ±6.5 a

12.33 ±4.5 a

Bo

4.33 ±3.05 a

8.33 ±0.57 a

12 ±1.73 a

19 ±5.56 a

Gm

5 ±3 a

8.66 ±2.3 a

19 ±10.58 a

30.33 ±10.4 a

Az

7 ±1 a

10.66 ±1.15 a

17.33 ±4.16 a

41.67 ±28.93 a

Gc

3.66 ±2.08 a

10 ±1 a

36.67 ±21.22 a

49 ±15.39 a

Az+Gc

3.66 ±2.08 a

8.33 ±1.52 a

23.33 ±19.73 a

35.33 ±23.18 a

Gm+L

8.66 ±2.08 a

13 ±1 a

17.67 ±0.57 a

16.33 ±9.71 a

Gm+Az

7 ±2.64 a

11.33 ±3.05 a

25.33 ±15.37 a

33.33 ±3.51 a

Gm+Gc

4.66 ±4.04 a

9.33 ±4.5 a

24.33 ±20.25 a

33 ±9.64 a

L+Az

9.66 ±6.65 a

16.66 ±9.23 a

40 ±24.57 a

43.67 ±40.5 a

L+Gc

5.66 ±07.23 a

8.66 ±7.23 a

15.67 ±16.77 a

16.67 ±19.34 a

Gm+Az+Gc

4 ±2.64 a

7.33 ±6.11 a

15.33 ±12.09 a

27 ±10.14 a

Gm+L+Az

6 ±3 a

10 ±8.66 a

18.33 ±10.21 a

26.67 ±7.76 a

Gm+L+Gc

8.66 ±0.57 a

13 ±3 a

20 ±9.53 a

56.33 ±18.58 a

L+Az+Gc

14 ±14.73

17.33 ±17.03 a

22 ±18.52 a

29.33 ±20.55 a

Cv

85.58

60.34

62.25

57.14

Nn= Number of knots; T= control; L= vermicompost; Na= NaturAbono®; Gm= bat guano; Az= Azotobacter sp.; Gc= Glomus cubense. Averages with the same letter per column do not differ significantly (Tukey, p< 0.05); mean ±standard error is included; cv= coefficient of variation; ns= not significant.

Roman et al. (2013), mention that these results are attributed to the fact that, the greater the amount of organic matter, the greater the microbial quantity and when applying organic fertilizers together with biofertilizers, there is the possibility of nutrient release due to the continuous decomposition of organic matter and by the effect of microorganisms in the soil.

Martínez et al. (2015), report that the incorporation of biofertilizers is an alternative for the survival of the coffee crop, since they provide beneficial microorganisms that when applied to crops or to the soil, alone or in combination, favor their biological activity, the use of nutrients in association with plants and plant growth, so that yields are maintained or increased.

Conclusions

The incorporation of organic fertilizers and biofertilizers had significant effects between treatments. In the variable Ap the treatment Gm+L+Gc showed the highest values with 213 cm from the 180 dda. For Dt, treatment T showed a value of 3.16 cm. The variable Nn did not find significant differences, with the treatment Gm+L+Gc with 56.33 Nn. Likewise, the incorporation of said inputs generates greater growth and vigor to the plants, on the other hand, improves the soil structure, providing the necessary nutrients for said cultivation.

Cited literature

Adriano, A. M. L.; Gálvez, R. J.; Hernández, R. C.; Figueroa, M. S. y Monreal, V. C. T. 2011. Biofertilización del café orgánico en etapa de vivero, Chiapas, México. Rev. Mex. Cienc. Agríc. 2(3):417-431.

Aguado-Santacruz, G. A. 2012. Introducción al uso y manejo de los biofertilizantes en la agricultura. 35-78 pp.

Aguilar, C. E. 2014. La agricultura sostenible en el Valle del Tulijá, Chiapas, México. Universidad Autónoma de Chiapas (UNACH). México. 183 p.

Aguilar, J. C. E.; Alvarado, C. I.; Martínez, A. F. B.; Galdámez, G. J.; Gutiérrez, M. A. y Morales, C. J. A. 2016. Evaluación de tres abonos orgánicos en el cultivo de café (Coffea arabica L.) en etapa de vivero. Siembra. 3(1):11-20.

Aguilar, J. C. E.; Galdámez, G. J. A.; Gutiérrez, M. J. A.; Morales, C. y Martínez, A. F. B. 2017. Evaluación de abonos orgánicos en el cultivo de Erythrina goldmanii en etapa de vivero. In: La agricultura sostenible como base para los agronegocios. Universidad Autónoma de San Luis Potosí. Primera Edición. 101-107 pp.

Aranda, B. J. G. 2010. Mejores prácticas para la producción de café en el estado de Oaxaca con enfoque a mitigación del cambio climático. Guía de buenas prácticas para café sustentable, México. 115 p.

Boudet, A. A.; Chinchilla, C. V. E.; Boicet, F. T. y González, G. G. 2015. Efectos de diferentes dosis de abono orgánico tipo bocashi en indicadores morfológicos y productivos del cultivo de pimiento (Capsicum annuum L.) var. California Wonder. Centro Agricola. 42(4):5-9.

Cabon, M. 2015. Effect of shade on microclimate, soil fertility and productivity of coffee trees in Costa Rica. Turrialba. Report Internship job Cirad-Catie, Costa Rica. 31 p.

Cascante, U. P. and Furcal, B. P. 2018. Effect of growth regulators, Trichoderma harzianum fungus, and mineral elements on coffee (Coffea arabica L.) regrowths, in Acosta, San José, Costa Rica. AgroInnovación en el trópico húmedo. 1(1):3-9. doi: 10.18860/rath. v1i1.3922.

Casique, V. R.; Mendoza, V. R. F.; Galindo, G. S.; González, M. S. and Sánchez, P. 2018. Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. Southern Forests: a J. Forest Sci. 1-8 pp. doi: 10.2989/20702620.2018.1474415.

CEDRSSA. 2018. Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria. El café en México diagnóstico y perspectiva.  http://www.cedrssa.gob.mx/ files/10/30El%20caf%C3%A9%20en%20M%C3%A9xico:%20diagn%C3%B3stico%20y%20perspectiva.pdf.

Cilas, C.; Bouharmont, P.; Boccara, M.; Eskes, A. B. and Baradat, P. 1998. Prediction of genetic value for coffee production in Coffea arabica from a half-diallel with lines and hybrids. Euphytica. 104(1):49-59. doi: doi.org/10.1023/A:1018635216182.

Contreras, C. A.; Sánchez, M. P.; Romero, A. O.; Rivera, T. J. A.; Ocampo, F. I. y Parraguirre, L. J. F. C. 2019. Prácticas agroecológicas y su influencia en la fertilidad del suelo en la región cafetalera de Xolotla, Puebla. Acta Universitaria 29. doi: http://doi.org/10.15174/au.201 9.1864.

Coutiño, P. V.; Santoyo, C. V. H.; Flores, V. J. J. y Muñoz, R. M. 2017. Análisis comparativo de dos organizaciones de pequeños productores de café de Oaxaca, México. Turismo, Economía y Negocios. 3(2):41-57.

Duarte, C. H. A. 2016. Efecto del riego en crecimiento y rendimiento del café (Coffea arabica L.) Catrenic. Ingeniería Agrícola. 6(4):17-22. doi: http://dx.doi.org/10.13140/RG.2.2. 30118.73283.

Duicela, G. L. A. 2011. Manejo sostenible de fincas cafetaleras: buenas prácticas en la producción de café arábico y gestión de la calidad en las organizaciones de productores. Porto Viejo, Ecuador. Consejo Cafetalero Nacional COFENAC). 309 p.

Espinosa, G. J. A.; Uresti, G. J.; Vélez, I. A.; Moctezuma, L. G.; Uresti, D. D.; Góngora, G. S. F. y Inurreta, A. H. D. 2016. Productividad y rentabilidad potencial del café (Coffea arabica L.) en el trópico mexicano. Rev. Mex. Cienc. Agríc. 7(8):2011-2024.

FIRA. 2018. Fideicomisos Instituidos en Relación a la Agricultura. Panorama Agroalimentario, Café 2017. https://www.fira.gob.mx/InfEspDtoXML/abrirArchivo.jsp?abreArc=68637.

Flores, V. F. 2015. La producción de café en México: ventana de oportunidad para el sector agrícola de Chiapas. Espacio, Innovación más Desarrollo. 4(7):174-194. doi: http://dx.doi.org/10.31644/IMASD.7.2015.a07.

Galindo, B. H. G. 2013. Definición de las tendencias de fertilidad en suelos cafeteros de Charalá, Coromoro y Ocamonte (Santander). Ciencia y Agricultura. 10(2):67-72.

Gómez, G. R.; Palma, L. D. J.; Obrador, O. J. J. y Ruiz, R. O. 2018. Densidad radical y tipos de suelos en los que se produce café (Coffea arabica L.) en Chiapas, México. Ecosistemas y Recursos Agropecuarios. 5(14):203-215. doi: 10.19136/era. a5n14.1278.

INEGI. 2019. Instituto Nacional de Estadística y Geografía. Simulador de flujos de agua de cuencas hidrográficas (SIATL). http://antares.inegi.org.mx/analisis/red-hidro/siatl/#app= 86ae&e312selectedIndex=0&7b02-selectedIndex=0&dc07-selectedIndex=1.

Jaramillo, D. F. 2002. Introducción a la Ciencia del suelo. Universidad Nacional de Colombia. Facultad de Ciencias. Medellín, Colombia. 619 p.

Larios, G. R. C.; Salmerón, M. F. y García, C. L. 2014. Fertilidad del suelo con prácticas agroecológicas y manejo convencional en el cultivo de café. La Calera. 14(23):67-75. doi: https://doi.org/10.5377/calera.v14i23.2660.

López, B. W.; Reynoso, S. R.; Camas, G. R. y Santos, C. E. C. 2019. Caracterización de los suelos cultivados con café (Coffea arabica L.) en la Sierra Madre de Chiapas, México. Agroproductividad. 12(1):53-58. doi: https://doi.org/1010.32854/agrop.v0i0.1338.

Martínez, R. E.; López, G. M.; Ormeño, O. E. y Moles, A. C. 2015. Manual teórico práctico. Los biofertilizantes y su uso en la agricultura. Ed. Prado. 50 p.

Medina, M. J. A.; Ruiz, N. R. E.; Gómez, C. J. C.; Sánchez, Y. J. M.; Gómez, A. G. y Pinto, M. O. 2016. Estudio del sistema de producción de café (Coffea arabica L.) en la región Frailesca, Chiapas. Científicas de América Latina, el Caribe, España y Portugal. 10(2):33-43.

Moisés, M. L.; Yonger, T. A. and Barraza, F. V. 2015. Ecological and economical alternative for Coffea arabica L. seedling obtainment. Cienc. Agríc. 32(1):65-74. doi: https://doi.org/10.22267/rcia.153201.25.

Montgomery, D. 2005. Diseño y análisis de experimentos. Ed. Limusa Wiley. Segunda edición. México, DF. 686 p.

Mosquera, A. T.; Melo, M. M.; Quiroga, C. G.; Avendaño, D. M.; Barahona, M.; Galindo, F. D.; Lancheros, J. J.; Prieto, S. A.; Rodríguez, A. and Sosa, D. N. 2016. Evaluation of organic fertilizers in coffee (Coffea arabica), in small holdings of Santander, Colombia. Temas Agrarios. 21(1):90-101. doi: http://dx.doi.org/10.21897 / rta. v21i1.894.

Noriega, A. G.; Cárcamo, R. B.; Gómez, C. M. Á.; Schwentesius, R. R.; Cruz, H. S.; Leyva, B. J.; García de la Rosa, E.; López, R. U. I. y Martínez, H. A. 2014. Intensificación de la producción en la agricultura orgánica: caso café. Rev. Mex. Cienc. Agríc. 5(1):163-169.

Palma, L. D. J.; Cisneros, D. J.; Del-Rivero, B. N.; Triano, S. A. y Castañeda, C. R. 2007. Hacia un desarrollo sustentable del uso de suelos de Tabasco. In: Palma, L. D. J. and Triano, S. A. (Comp.). Vol. II. 2da reimpresión. Plan de uso de los suelos de Tabasco. Vol. 2. Colegio de Postgraduados-ISPROTAB. Villahermosa, Tabasco, México. 9-37 pp.

Pérez, A.; Bustamante, C.; Rodríguez, R.; Díaz, A.; Bertot, Y. y Rodrígue, M. I. 2002. Influencia de diferentes variantes de fertilización en el crecimiento y desarrollo de posturas de Coffea canephora Pierre. Cultivos Tropicales. 23(4):89-93.

Plaza, A. L. F.; Loor, S. R. G.; Guerrero, C. H. E. y Duicela, G. L. A. 2015. Caracterización fenotípica del germoplasma de Coffea canephora Pierre base para su mejoramiento en Ecuador. Espamciencia. 6(1):7-13.

Reyes, L. D.; Mercado, M. G.; Escamilla, P. E. y Robledo, M. J. D. 2018. Innovaciones tecnológicas en la producción de planta de café (Coffea arabica L.). Agroproductividad. 11(4):74-79.

Rodríguez, G. F. A.; Camacho, T. J. H. y Rubiano, S. Y. 2016. Variabilidad espacial de los atributos químicos del suelo en el rendimiento y calidad de café. Corporación Colombiana de Investigación Agropecuaria. 17(2):237-254.

Roger, A.; Libohova, Z.; Rossier, N.; Joost, S.; Maltas, A.; Frossard, E. and Sinaj, S. 2014. Spatial variability of soil phosphorus in the Fribourg canton, Switzer-land. Geoderma. 217:26-36.

Román, P.; Martínez, M. M. y Pantoja A. 2013. Manual de compostaje del agricultor; experiencias en América Latina. Oficina Regional para América Latina y el Caribe, Santiago de Chile. 17-25 pp.

SAGARPA. 2017. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Café mexicano. México: planeación agrícola nacional 2017-2030. https://www.biodiversidad.gob.mx/corredor/TPS/pdf/03-planeacion-agricola-nacional sagarpa.pdf.

SAGARPA. 2018. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Anuario estadístico de la producción agrícola. https://nube.siap.gob.mx/cierreagricola/.

SAS Institute Inc. 2011. SAS/STAT® 9.3 User’s Guide. Cary, NC: SAS Institute Inc.

SEMARNAT. 2000. Secretaría de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-021 RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf.

SIAP. 2018. Servicio de Información Agroalimentaria y Pesquera. Café cereza cierra su ciclo productivo 2018, México, DF. 2018. https://www.gob.mx/siap/articulos/cafe-cereza-cierra-su-ciclo-productivo-2018?idiom=es.

Silva, V. M. Da.; Teixeira, A. F. R.; Reis, E. F. Dos. and Mendonça, E. de S. 2013. Yield and nutritional status of the conilon coffee tree in organic fertilizer systems. Ciênc. Agron. 44(4):773-781. doi: http://dx.doi.org/10.1590/S1806-66902013000400014.

Steel, R. y Torrie, J. 1988. Bioestadística: principios y procedimientos. Editorial. McGraw Hill. Segunda edición. México, DF. 622 p.

Thériez, M. 2015. Los efectos de la sombra sobre la energía cinética de las gotas de agua, la cobertura del suelo, la infiltración del agua, la roya y el dieback en Turrialba, Costa Rica. Turrialba. Informe de pasantía voluntaria. CIRAD, Costa Rica. 32 p.

Villareyna, A. R. A. 2016. Efecto de los árboles de sombra sobre el suelo, en sistemas agroforestales con café, incluyendo la fenología y fisiología de los cafetos. Informe proyecto cascada. Ministerio Federal de Medio Ambiente, Protección de la naturaleza, obras públicas y seguridad nuclear. Alemania. 36 p.

Zavala, C. C. J.; Salgado, G. S.; Marín, A. A.; Palma, L. D. J.; Castelán, E. M. y Ramos, R. R. 2014. Transecto de suelos en terrazas con plantaciones de cítricos en Tabasco. Ecosistemas y Recursos Agropecuarios. 1(2):123-137.